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Fig. 7. (a) Nuclear many-body landscape and (b) degrees of freedom and corresponding scales in nuclei [48].

or for octupole enhancement factors of electric dipolemoments. In all cases, we seek theoretical error estimates, particularly
for extrapolations to systems where measurements will be limited or non-existent.

Progress toward such controlled nuclear calculations has long been hindered by the difficulty of the nuclear many-body
problem, when conventional nuclear potentials are used. This has historically been accepted as an unavoidable reality.
Indeed, conventional wisdom among nuclear physicists, as summarized by Bethe in his review of over 30 years ago [49],
holds that successful nuclear matter calculations must be highly non-perturbative in the potential. This is in contrast to
the Coulomb many-body problem, for which Hartree–Fock is a useful starting point and (possibly resummed) many-body
perturbation theory (MBPT) is an effective tool. The possibility of a soft potential providing a more perturbative solution to
the nuclear matter problemwas discarded at that time, and saturation firmly identified with the density dependence due to
the tensor force [49]. Until recent RG-based calculations [9,16,17], subsequent work on the nuclear matter problem [50–53]
had not significantly altered the general perspective or conclusions of Bethe’s review (although the role of three-nucleon
(3N) forces has been increasingly emphasized).

As already noted, non-perturbative behavior in the particle–particle channel for nuclear forces arises from several
sources. First is the strong short-range repulsion, which requires at least a summation of particle–particle-ladder
diagrams [49]. Second is the tensor force, for example, from pion exchanges, which is highly singular at short distances,
and requires iteration in the triplet channels [54,55]. Third is the presence of low-energy bound states or nearly bound
states in the S-waves. These states imply poles in the scattering T matrix that render the perturbative Born series divergent.
All these non-perturbative features are present in conventional high-precision NN potentials.

The philosophy behind the standard approach to nuclear matter is to attack these features head-on. This attitude was
succinctly stated by Bethe [49]:

‘‘The theory must be such that it can deal with any NN force, including hard or ‘soft’ core, tensor forces, and other
complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear
matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary
experimental evidence, like the binding energy of 3H).’’

In contrast, the EFT and RG perspective has a completely different underlying philosophy, which stresses that the potential
is not an observable to be fixed from experiment (there is no ‘‘true potential’’), but that an infinite number of potentials are
capable of accurately describing low-energy physics [56]. In order to be predictive and systematic, an organization (‘‘power
counting’’) must be present to permit a truncation of possible terms in the potential. If a complete Hamiltonian is used
(includingmany-body forces), then all observables should be equivalent up to truncation errors. The EFT philosophy implies
using this freedom to choose a convenient and efficient potential for the problems of interest.

The use of energy-independent low-momentum interactions is a direct implementation of these ideas. Varying the
cutoff can be used as a powerful tool to study the underlying physics scales, to evaluate the completeness of approximate
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Fig. 9. Schematic illustration of two types of RG evolution for NN potentials in momentum space: (a) Vlow k running in ⇤ and (b) SRG running in �. At each
⇤i or �i , the matrix elements outside of the corresponding lines are zero, so that high- and low-momentum states are decoupled.

Fig. 10. Two types of RG evolution applied to one of the chiral N3LO NN potentials (550/600 MeV) of Ref. [44] in the 3S1 channel: (a) Vlow k running in ⇤
and (b) SRG running in � (see Fig. 27 for plots in k2, which show the diagonal width of order �2).

‘‘At each scale, we have different degrees of freedom and different dynamics. Physics at a larger scale (largely)
decouples from the physics at a smaller scale. . . . Thus, a theory at a larger scale remembers only finitely many
parameters from the theories at smaller scales, and throws the rest of the details away. More precisely, when we
pass from a smaller scale to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the RG
method is to explain how this decoupling takes place and why exactly information is transmitted from scale to scale
through finitely many parameters.’’

The common features of RG for critical phenomena and high-energy scattering are discussed by StevenWeinberg in an essay
in Ref. [64]. He summarizes:

‘‘Themethod in itsmost general form can I think be understood as away to arrange in various theories that the degrees
of freedom that you’re talking about are the relevant degrees of freedom for the problem at hand.’’

This is the heart ofwhat is donewith low-momentum interaction approaches: arrange for the degrees of freedom for nuclear
structure to be the relevant ones. This does not mean that other degrees of freedom cannot be used, but to again quote
Weinberg [64]: ‘‘You can use any degrees of freedom you want, but if you use the wrong ones, you’ll be sorry.’’

There are two major classes of RG transformations used to construct low-momentum interactions, which are illustrated
schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering amomentum cutoff⇤ abovewhichmatrix
elements go to zero. In the SRG approach, decoupling is achieved by lowering a cutoff � (in energy differences �2) using flow
equations, whichmeans evolving toward the diagonal inmomentum space. The technology for carrying out these is outlined
in Section 3, but the effects can be readily seen in the series of contour plots in Fig. 10(a) and (b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction, but shifts
contributions between the interaction strengths and the sums over intermediate states in loop integrals. The evolution
of phenomenological or chiral EFT interactions to lower resolution is beneficial, because these shifts can weaken or largely
eliminate sources of non-perturbative behavior, and because lower cutoffs require smaller bases inmany-body calculations,
leading to improved convergence for nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-
order contributions, to neglected many-body interactions or to an incomplete many-body treatment. When initialized with
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Fig. 17. Diagonal (left) and off-diagonal (right) momentum–space matrix elements for various phenomenological NN potentials initially (upper figures)
and after RG evolution to low-momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator with ⇤ = 2.0 fm�1 and nexp = 4.

Fig. 18. Diagonal (left) and off-diagonal (right) momentum–space matrix elements of different N3LO NN interactions (EM [20] and EGM [44]) initially
(upper figures) and after RG evolution to low-momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator with ⇤ = 2.0 fm�1 and nexp = 4.
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Fig. 19. (a) Particle–particle contributions to the energy per nucleon in symmetric nuclear matter as a function of the Fermi momentum kF for the initial
Argonne v18 potential and the RG-evolved Vlow k with⇤ = 2.1 fm�1 [9]. (b) Pair-distribution function g(r) in nuclearmatter for kF = 1.35 fm�1 at different
resolutions, for details see Ref. [10].

Fig. 20. Trajectories of the largest repulsive Weinberg eigenvalues in the (a) 1S0 and (b) 3S1–3D1 channels as a function of energy for Vlow k evolved from
the Argonne v18 potential [12]. The results for selected cutoffs are indicated by the different symbols. The positions of the symbols on each trajectory mark
the eigenvalues for center-of-mass energies Ecm = 0, 25, 66, 100 and 150 MeV, starting from the filled symbol at 0 MeV. The trajectory with stars are
eigenvalues for the N3LO potential of Ref. [20].

By finding the eigenvalues and eigenvectors of the operator (E � H0)
�1V ,

1
E � H0

V |�⌫i = ⌘⌫(E)|�⌫i, (5)

and then acting with T (E) on the eigenvectors,

T (E)|�⌫i =
�

1 + ⌘⌫(E) + ⌘2
⌫(E) + · · ·

�

V |�⌫i, (6)
it follows that non-perturbative behavior at energy E is signaled by one or more eigenvalues with |⌘⌫(E)| > 1 [75]. A
rearrangement of Eq. (5) gives a simple interpretation of the eigenvalue ⌘⌫(E) as an energy-dependent coupling that must
divide V to produce a solution to the Schrödinger equation at energy E. For negative energies, a purely attractive V gives
positive real ⌘⌫(E) values, while a purely repulsive V gives negative eigenvalues. For this reason, we refer to negative
eigenvalues as repulsive and positive ones as attractive, although the eigenvalues become complex for positive E.

Fig. 20 shows the trajectories of the largest repulsive Weinberg eigenvalue in the 1S0 and 3S1–3D1 channels as a function
of (positive) energy for Vlow k interactions with various cutoffs evolved from the Argonne v18 potential. Themagnitude of the
largest repulsive eigenvalue at all energies decreases rapidly as the cutoff is lowered. This reflects the decrease of the short-
range repulsion present in the initial potential. In the 1S0 channel, the trajectory lies completely inside the shaded unit circle

46

  



Improvements in Perturbation Theory 
Explore improvements in symmetric infinite matter calculations 
 

Order by order in many-body perturbation theory (MBPT) 
 
 
 
 
 
 
 
 
 
 
 

No clear convergence with increasing order in bare potential 
 

Significant improvement with low-momentum interactions! 

108 S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147

Fig. 19. (a) Particle–particle contributions to the energy per nucleon in symmetric nuclear matter as a function of the Fermi momentum kF for the initial
Argonne v18 potential and the RG-evolved Vlow k with⇤ = 2.1 fm�1 [9]. (b) Pair-distribution function g(r) in nuclearmatter for kF = 1.35 fm�1 at different
resolutions, for details see Ref. [10].

Fig. 20. Trajectories of the largest repulsive Weinberg eigenvalues in the (a) 1S0 and (b) 3S1–3D1 channels as a function of energy for Vlow k evolved from
the Argonne v18 potential [12]. The results for selected cutoffs are indicated by the different symbols. The positions of the symbols on each trajectory mark
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eigenvalues for the N3LO potential of Ref. [20].
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eigenvalues for the N3LO potential of Ref. [20].
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eigenvalues for the N3LO potential of Ref. [20].
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eigenvalues as repulsive and positive ones as attractive, although the eigenvalues become complex for positive E.
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integrate-out high k states
preserves observables for k < !

“Similarity RG”
 eliminate far off-diagonal coupling
 preserves “all” observables 

Very similar consequences despite differences in appearance!
(universal low-momentum interaction, decoupling of high-k, preservation of low E physics)

(technical details in lecture 2)
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2 Types of Renormalization Group Transformations

“Vlow k”
integrate-out high k states
preserves observables for k < !

“Similarity RG”
 eliminate far off-diagonal coupling
 preserves “all” observables 

Very similar consequences despite differences in appearance!
(universal low-momentum interaction, decoupling of high-k, preservation of low E physics)

(technical details in lecture 2)

Similarity Renormalization Group 
Drives Hamiltonian to band-diagonal 

Wegner, Glazek/Wilson (1990s) 



Similarity Renormalization Group 

Apply a continuous unitary transformation, parameterized by s: 
 
 
where differentiating (exercise) yields: 
 
                                                 where 
 
Never explicitly construct unitary transformation 
 

Instead choose generator to obtain desired behavior: 
 
                                                
Many options, e.g., 
                                        
                                                  Drives H(s) to band-diagonal form 
 

H = T + V ! H(s) = U(s)HU †(s) ⌘ T + V (s)

dH(s)

ds
= [⌘(s), H(s)] ⌘(s) ⌘ dU(s)

ds
U †(s)

⌘(s) = [T,H(s)]

Wegner, Glazek/Wilson (1990s) 

⌘(s) = [G(s), H(s)]



Illustration of SRG Flow 

Drive H to band-diagonal form with kinetic-energy generator: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s

Overview RG Basics flow

Flow equations in action: NN only
In each partial wave with ✏k = ~2k2/M and �2 = 1/

p
s

dV�

d�
(k , k 0) / �(✏k � ✏k 0)2V�(k , k 0) +

X

q

(✏k + ✏k 0 � 2✏q)V�(k , q)V�(q, k 0)
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Illustration of SRG Flow 

Overview RG Basics flow

Flow equations in action: NN only
In each partial wave with ✏k = ~2k2/M and �2 = 1/

p
s

dV�

d�
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Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s



Illustration of SRG Flow 

Overview RG Basics flow

Flow equations in action: NN only
In each partial wave with ✏k = ~2k2/M and �2 = 1/

p
s
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Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s



Illustration of SRG Flow 

Overview RG Basics flow

Flow equations in action: NN only
In each partial wave with ✏k = ~2k2/M and �2 = 1/

p
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Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s



Illustration of SRG Flow 

Overview RG Basics flow

Flow equations in action: NN only
In each partial wave with ✏k = ~2k2/M and �2 = 1/

p
s
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Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s



Other Generator Choices: Block Diagonal 

Create block diagonal form like Vlowk? 
 
 
 
With alternate definition of flow parameter: �2 =

1p
s

G(s) = HBD =

✓
PH(s)P 0

0 QH(s)Q

◆

ArgonneV18
3
S1

Overview RG Basics 3NF BD

Block diagonalization via SRG [Gs = HBD]

Can we get a ⇤ = 2 fm�1 V
low k -like potential with SRG?

Yes! Use dHs
ds = [[Gs,Hs],Hs] with Gs =

✓
PHsP 0

0 QHsQ

◆

What are the best generators for nuclear applications?
Dick Furnstahl Nuclei at Low Resolution
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Create block diagonal form like Vlowk? 
 
 
 
With alternate definition of flow parameter: �2 =

1p
s

G(s) = HBD =
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Overview RG Basics 3NF BD

Block diagonalization via SRG [Gs = HBD]

Can we get a ⇤ = 2 fm�1 V
low k -like potential with SRG?

Yes! Use dHs
ds = [[Gs,Hs],Hs] with Gs =

✓
PHsP 0

0 QHsQ

◆

What are the best generators for nuclear applications?
Dick Furnstahl Nuclei at Low Resolution

� = 5.0 fm�1

Other Generator Choices: Block Diagonal 



� = 2.0 fm�1

Create block diagonal form like Vlowk? 
 
 
 
With alternate definition of flow parameter: �2 =

1p
s

G(s) = HBD =

✓
PH(s)P 0

0 QH(s)Q

◆

ArgonneV18
3
S1

Overview RG Basics 3NF BD

Block diagonalization via SRG [Gs = HBD]

Can we get a ⇤ = 2 fm�1 V
low k -like potential with SRG?

Yes! Use dHs
ds = [[Gs,Hs],Hs] with Gs =

✓
PHsP 0

0 QHsQ

◆

What are the best generators for nuclear applications?
Dick Furnstahl Nuclei at Low Resolution

Other Generator Choices: Block Diagonal 



SRG Renormalization of Chiral EFT Potentials 

These are all our 
favorite Chiral EFT 
NN potentials… 

These are all our 
favorite Chiral EFT  
NN potentials…  
SRG evolved 

Exhibit similar “universal” behavior as low-momentum interactions! 

Overview RG Basics 3NF BD

Run to lower � via SRG =) ⇡Universal VNN
Diagonal V�(k , k)
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Apparently different NN potentials flow to common VNN

Do NNN interactions evolve to universal form? [Hebeler: yes!]
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Run to lower � via SRG =) ⇡Universal VNN
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Renormalization of Nuclear Interactions 

AV18 

N3LO 

Vlow k(Λ): lower cutoffs advantageous for nuclear structure calculations 

Evolve momentum resolution scale of chiral interactions from initial       
Remove coupling to high momenta, low-energy physics unchanged 

€ 

Λχ

Bogner, Kuo, Schwenk, Furnstahl 

Universal at  
low-momentum 

H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



Smooth vs. Sharp Cutoffs 

AV18 

N3LO 

Similar but not exact same results – will be differences in calculations 

Can have sharp as well as smooth cutoffs 
Remove coupling to high momenta, low-energy physics unchanged 

Bogner, Kuo, Schwenk, Furnstahl 

AV18 

H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction

Dick Furnstahl Nuclei at Low Resolution

RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction

Dick Furnstahl Nuclei at Low Resolution

SRG-Evolution of Different Initial Potentials 

EFT1 

Lots of pretty pictures, but how does it actually help? 

SRG evolution of two different chiral EFT potentials 

EFT2 

H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



Revisit Low-Pass Filter Idea 

What’s the difference now? 

Ok, high momentum is a pain. I 
wonder what would happen to 

low-energy observables… 
Low-to-high momentum makes life difficult for 
low-energy nuclear theorists 

Vfilter(k
0, k) ⌘ 0; k, k0 > 2.2MeV

AV18 
SRG 



Revisit Low-Pass Filter Idea 

Low-energy observables were preserved – now sharp cut makes sense! 

Ok, high momentum is a pain. I 
wonder what would happen to 

low-energy observables… 
Low-to-high momentum makes life difficult for 
low-energy nuclear theorists 

Vfilter(k
0, k) ⌘ 0; k, k0 > 2.2MeV

Overview RG Basics flow

Low-pass filters work! [Jurgenson et al. (2008)]

Phase shifts with Vs(k , k 0) = 0 for k , k 0 > k
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Benefits of Lower Cutoffs 
Often work in HO basis – does this make a difference there? 
 

Removes coupling from low-to-high harmonic oscillator states 
 

Expect to speed convergence in HO basis 
 
 
 
 
 
 
 
 
 
 
 
 
Explicitly see why this causes problems later! 
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Faster convergence in HO basis expansions

49

many-body methods that expand on finite HO basis converge
much faster (weaker coupling to high momentum)

variational calculations improve (weaker correlations)



Benefits of Lower Cutoffs 
Exactly what happens in no-core shell model calculations 
 

Probably equally helpful in normal shell-model calculations? 
 

Come back to this later… 
134 S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147

Fig. 46. Ground-state energy of 6Li versus oscillator parameter h̄⌦ for different SRG-evolved interactions with � = 3.0, 2.0, 1.5 and 1.0 fm�1. The initial
interaction is the N3LO NN-only potential of Ref. [20]. The NCSM results clearly show improved convergence with the maximum number of oscillator
quanta Nmax for lower cutoffs. Because 3N interactions are neglected, the different NN calculations converge to different ground-state energies. For details,
see Ref. [14].

a b c

Fig. 47. Ground-state energies of (a) 4He, (b) 6Li, and (c) 7Li as a function of � for SRG interactions evolved from the N3LO NN-only potential of Ref. [20].
Error bars for larger � values are from extrapolations in Nmax. The arrowmarks the experimental energy. The characteristic increase in Egs at small � signals
the modification of the long-range attractive interaction [138]. For details see Ref. [14].

energy variation shown in Fig. 47 is comparable to natural-size truncation errors in chiral EFT, with no unnaturally large
contributions from omitted three-body forces for these light nuclei. Further evidence that the evolution preserves the
hierarchy of the underlying chiral EFT is shown in Figs. 35 and 36.

Extensions of ab initio methods to heavier and neutron-rich nuclei are a frontier of nuclear theory. CC theory is the prime
method for systems with up to 100 electrons in quantum chemistry [199] and a powerful method for nuclei for which a
closed-shell reference state provides a good starting point [86,200]. For 3H and 4He, CC results agree with the corresponding
Faddeev and Faddeev–Yakubovsky energies [13]. Combined with rapid convergence for low-momentum interactions, CC
theory has pushed the limits of accurate calculations tomedium-mass nuclei and set new benchmarks for 16O and 40Ca [13].
Using an angular-momentum- coupled scheme, it is possible to extend CC theory to very large spaces (15 major shells on a
single processor) and to obtain near-converged ground-state energies for spherical nuclei, 40Ca, 48Ca, and 48Ni, based on a
N3LO NN potential [201]. The CC developments for medium-mass nuclei are shown in Fig. 48, where the critical importance
of 3N forces for ground-state energies is evident.

Recently, a combination of nuclear and atomic physics techniques led to the first precision measurements of masses and
charge radii of the helium halo nuclei, 6He [202,203] and 8He [204,205], with two or four weakly bound neutrons forming
an extended halo around the 4He core. In Fig. 49, results are shown for the ground-state energies of helium nuclei based
on chiral low-momentum NN interactions [15]. This combines the RG evolution with the exact hyperspherical-harmonics



Benefits of Lower Cutoffs 
Use cutoff dependence to assess missing physics: return to Tjon line 
 

Varying cutoff moves along line  
 

Still never reaches experiment 
 
Lesson: Variation in  
physical observables  
with cutoff indicates  
missing physics  
 
Tool, not a parameter! 
 

3

1) Tells you if you’re missing something

2) Tells you how big it is



Benefits of Lower Cutoffs 
Triton binding energy - again clearly improved convergence behavior 
 

Clear dependence on cutoff – more than one, look closely… 
 

What is the source(s)? 
S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147 117

Fig. 29. (a) Absolute error versus � of the deuteron binding energy from a variational calculation in a fixed-size basis of harmonic oscillators (Nmaxh̄!
excitations). (b) Variational triton binding energy for selected � with NN interactions only, as a function of Nmax. For details, see Ref. [7].

distinct at higher momentum), with the universal low-momentum parts numerically similar to the Vlow k potentials. These
observations are illustrated in Fig. 28(a) for the diagonal and off-diagonal matrix elements.

Similarly, the non-perturbative features associated with strong short-range repulsion and strong short-range tensor
forces are substantially softened as we evolve to lower �. The largest repulsive Weinberg eigenvalues (see Section 2.4) for
E = 0 are shown as a function of � in Fig. 28(b) for the 1S0 and 3S1–3D1 channels. In both channels, the large eigenvalues
decrease rapidly as� evolves to 2 fm�1 and below, as observedwith the Vlow k evolution in Section 2.4. Themore perturbative
potentials at lower � induce weaker short-range correlations in few- andmany-body wave functions, which leads to greatly
improved convergence in variational calculations. This is illustrated in Fig. 29(a) and (b) via calculations of the deuteron and
triton binding energies by diagonalization in a harmonic-oscillator basis. The improvement in convergence is similar to that
found with smoothly cutoff Vlow k interactions [6].

In Fig. 29(b), the calculations for different � converge to different values for the triton binding energy. This reflects the
contributions of the omitted (and evolving) three-body interactions, and follows a similar pattern to that seenwith NN-only
Vlow k calculations [6,8]. The consistent evolution ofmany-body forces is an important issue for low-momentum interactions.
For the SRG, the evolution of 3N forces is readily practical, as discussed in Section 4.2.

3.4. Vlow k from SRG flow equations

A powerful feature of the SRG is that the generator Gs can be tailored to decouple high- and low-momentum physics
in different ways [104]. Block-diagonal decoupling of the sharp Vlow k form can be generated using SRG flow equations by
choosing a block-diagonal flow operator [105,106],

Gs =
✓

PHsP 0
0 QHsQ

◆

, (24)

with projection operators P and Q = 1�P . In a partial-wavemomentum representation, P and Q are step functions defined
by a sharp cutoff⇤ on relativemomenta. This choice forGs, whichmeans that⌘s is non-zero onlywhereGs is zero, suppresses
off-diagonal matrix elements such that the Hamiltonian approaches a block-diagonal form as s increases. If one considers a
measure of the off-diagonal coupling of the Hamiltonian,

Tr[(QHsP)Ñ(QHsP)] = Tr[PHsQHsP] > 0, (25)

then its derivative is easily evaluated by applying the SRG equation, Eq. (21):
d
ds

Tr[PHsQHsP] = Tr[P⌘sQ (QHsQHsP � QHsPHsP)] + Tr[(PHsPHsQ � PHsQHsQ )Q⌘sP]

= � 2 Tr[(Q⌘sP)Ñ(Q⌘sP)] 6 0. (26)

Thus, the off-diagonal QHsP block will decrease in general as s increases [105,106].
The right panels of Fig. 30(a) and (b) result from evolving the N3LO potential of Ref. [20] using the block-diagonal Gs of

Eq. (24) with ⇤ = 2 fm�1 to � = 0.5 fm�1. The agreement between Vlow k and SRG potentials for momenta below ⇤ is
striking, where a similar degree of universality is found in other channels. Deriving an explicit connection between these
approaches is the topic of ongoing research.
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Fig. 29. (a) Absolute error versus � of the deuteron binding energy from a variational calculation in a fixed-size basis of harmonic oscillators (Nmaxh̄!
excitations). (b) Variational triton binding energy for selected � with NN interactions only, as a function of Nmax. For details, see Ref. [7].

distinct at higher momentum), with the universal low-momentum parts numerically similar to the Vlow k potentials. These
observations are illustrated in Fig. 28(a) for the diagonal and off-diagonal matrix elements.

Similarly, the non-perturbative features associated with strong short-range repulsion and strong short-range tensor
forces are substantially softened as we evolve to lower �. The largest repulsive Weinberg eigenvalues (see Section 2.4) for
E = 0 are shown as a function of � in Fig. 28(b) for the 1S0 and 3S1–3D1 channels. In both channels, the large eigenvalues
decrease rapidly as� evolves to 2 fm�1 and below, as observedwith the Vlow k evolution in Section 2.4. Themore perturbative
potentials at lower � induce weaker short-range correlations in few- andmany-body wave functions, which leads to greatly
improved convergence in variational calculations. This is illustrated in Fig. 29(a) and (b) via calculations of the deuteron and
triton binding energies by diagonalization in a harmonic-oscillator basis. The improvement in convergence is similar to that
found with smoothly cutoff Vlow k interactions [6].

In Fig. 29(b), the calculations for different � converge to different values for the triton binding energy. This reflects the
contributions of the omitted (and evolving) three-body interactions, and follows a similar pattern to that seenwith NN-only
Vlow k calculations [6,8]. The consistent evolution ofmany-body forces is an important issue for low-momentum interactions.
For the SRG, the evolution of 3N forces is readily practical, as discussed in Section 4.2.

3.4. Vlow k from SRG flow equations

A powerful feature of the SRG is that the generator Gs can be tailored to decouple high- and low-momentum physics
in different ways [104]. Block-diagonal decoupling of the sharp Vlow k form can be generated using SRG flow equations by
choosing a block-diagonal flow operator [105,106],

Gs =
✓

PHsP 0
0 QHsQ

◆

, (24)

with projection operators P and Q = 1�P . In a partial-wavemomentum representation, P and Q are step functions defined
by a sharp cutoff⇤ on relativemomenta. This choice forGs, whichmeans that⌘s is non-zero onlywhereGs is zero, suppresses
off-diagonal matrix elements such that the Hamiltonian approaches a block-diagonal form as s increases. If one considers a
measure of the off-diagonal coupling of the Hamiltonian,

Tr[(QHsP)Ñ(QHsP)] = Tr[PHsQHsP] > 0, (25)

then its derivative is easily evaluated by applying the SRG equation, Eq. (21):
d
ds

Tr[PHsQHsP] = Tr[P⌘sQ (QHsQHsP � QHsPHsP)] + Tr[(PHsPHsQ � PHsQHsQ )Q⌘sP]

= � 2 Tr[(Q⌘sP)Ñ(Q⌘sP)] 6 0. (26)

Thus, the off-diagonal QHsP block will decrease in general as s increases [105,106].
The right panels of Fig. 30(a) and (b) result from evolving the N3LO potential of Ref. [20] using the block-diagonal Gs of

Eq. (24) with ⇤ = 2 fm�1 to � = 0.5 fm�1. The agreement between Vlow k and SRG potentials for momenta below ⇤ is
striking, where a similar degree of universality is found in other channels. Deriving an explicit connection between these
approaches is the topic of ongoing research.

Benefits of Lower Cutoffs 
Triton binding energy - again clearly improved convergence behavior 
 

Clear dependence on cutoff – more than one, look closely… 
 

What is the source(s)? 

1) SRG cutoff dependence 
 



Benefits of Lower Cutoffs 
Triton binding energy - again clearly improved convergence behavior 
 

Clear dependence on cutoff – more than one, look closely… 
 

What is the source(s)? 
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Fig. 29. (a) Absolute error versus � of the deuteron binding energy from a variational calculation in a fixed-size basis of harmonic oscillators (Nmaxh̄!
excitations). (b) Variational triton binding energy for selected � with NN interactions only, as a function of Nmax. For details, see Ref. [7].

distinct at higher momentum), with the universal low-momentum parts numerically similar to the Vlow k potentials. These
observations are illustrated in Fig. 28(a) for the diagonal and off-diagonal matrix elements.

Similarly, the non-perturbative features associated with strong short-range repulsion and strong short-range tensor
forces are substantially softened as we evolve to lower �. The largest repulsive Weinberg eigenvalues (see Section 2.4) for
E = 0 are shown as a function of � in Fig. 28(b) for the 1S0 and 3S1–3D1 channels. In both channels, the large eigenvalues
decrease rapidly as� evolves to 2 fm�1 and below, as observedwith the Vlow k evolution in Section 2.4. Themore perturbative
potentials at lower � induce weaker short-range correlations in few- andmany-body wave functions, which leads to greatly
improved convergence in variational calculations. This is illustrated in Fig. 29(a) and (b) via calculations of the deuteron and
triton binding energies by diagonalization in a harmonic-oscillator basis. The improvement in convergence is similar to that
found with smoothly cutoff Vlow k interactions [6].

In Fig. 29(b), the calculations for different � converge to different values for the triton binding energy. This reflects the
contributions of the omitted (and evolving) three-body interactions, and follows a similar pattern to that seenwith NN-only
Vlow k calculations [6,8]. The consistent evolution ofmany-body forces is an important issue for low-momentum interactions.
For the SRG, the evolution of 3N forces is readily practical, as discussed in Section 4.2.

3.4. Vlow k from SRG flow equations

A powerful feature of the SRG is that the generator Gs can be tailored to decouple high- and low-momentum physics
in different ways [104]. Block-diagonal decoupling of the sharp Vlow k form can be generated using SRG flow equations by
choosing a block-diagonal flow operator [105,106],

Gs =
✓

PHsP 0
0 QHsQ

◆

, (24)

with projection operators P and Q = 1�P . In a partial-wavemomentum representation, P and Q are step functions defined
by a sharp cutoff⇤ on relativemomenta. This choice forGs, whichmeans that⌘s is non-zero onlywhereGs is zero, suppresses
off-diagonal matrix elements such that the Hamiltonian approaches a block-diagonal form as s increases. If one considers a
measure of the off-diagonal coupling of the Hamiltonian,

Tr[(QHsP)Ñ(QHsP)] = Tr[PHsQHsP] > 0, (25)

then its derivative is easily evaluated by applying the SRG equation, Eq. (21):
d
ds

Tr[PHsQHsP] = Tr[P⌘sQ (QHsQHsP � QHsPHsP)] + Tr[(PHsPHsQ � PHsQHsQ )Q⌘sP]

= � 2 Tr[(Q⌘sP)Ñ(Q⌘sP)] 6 0. (26)

Thus, the off-diagonal QHsP block will decrease in general as s increases [105,106].
The right panels of Fig. 30(a) and (b) result from evolving the N3LO potential of Ref. [20] using the block-diagonal Gs of

Eq. (24) with ⇤ = 2 fm�1 to � = 0.5 fm�1. The agreement between Vlow k and SRG potentials for momenta below ⇤ is
striking, where a similar degree of universality is found in other channels. Deriving an explicit connection between these
approaches is the topic of ongoing research.

1) SRG cutoff dependence 
 

2) Initial cutoff dependence 
 
 
  Something missing in each case! 



Case 1: Price of Low Cutoffs = Induced Forces 
Life Lesson: no free lunch – not even at Summer Schools, apparently L  
 

Consider Hamiltonian with only two-body forces: 
 
 
And  
 
 
 
 
 

 
Simply expand with creation/annihilation operators: 
 

H = T + VNN

⌘(s) = [T,H(s)]

dH(s)

ds
= [⌘(s), H(s)] = [[T, T + V (s)] , T + V (s)]
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Simply expand with creation/annihilation operators: 
 
 
 
 
Three-body terms will appear even when initial 3-body forces absent 
 

Call these induced 3N forces (3N-ind) 

H = T + VNN

⌘(s) = [T,H(s)]

dH(s)
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Induced 3N Forces 
Effect of including 3N-ind? Exactly initial          up to neglected 4N-ind 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
NN-only clear cutoff dependencs 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

3D SRG evolution with T
rel

in a Jacobi HO basis
Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]

Here: use anti-symmetric Jacobi HO basis from NCSM
directly obtain SRG matrix elements in HO basis
separate 3-body evolution not needed

Compare 2-body only to full 2 + 3-body evolution:
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3N-induced – dramatic reduction in cutoff dependence! 
 

Lesson: SRG cutoff variation a sign of neglected induced forces 
 

 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

3D SRG evolution with T
rel

in a Jacobi HO basis
Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]
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Induced 3N Forces 
Effect of including 3N-ind? Exactly initial          up to neglected 4N-ind 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
NN-only clear cutoff dependencs 
 

3N-induced – dramatic reduction in cutoff dependence! 
 

Lesson: SRG cutoff variation a sign of neglected induced forces 
 

Still far from experiment and remaining (minor) cutoff dependence! 

VNN



Aside: G-matrix Renormalization 
Standard method for softening interaction in nuclear structure for decades: 

Infinite summation of ladder diagrams 
 

Need two model spaces:  
    1) M space in which we will want to calculate (excitations allowed in M) 
  

    2) Large space Q in which particle excitations are allowed  
 

To avoid double counting, can’t overlap – matrix elements depend on M 



Gijkl(!) = Vijkl +
X

mn2Q

Vijmn
Q

! � "m � "n
Gmnkl(!)

Aside: G-matrix Renormalization 
Standard method for softening interaction in nuclear structure for decades: 

Iterative procedure 
Dependence on arbitrary starting energy! 



G-matrix Renormalization 
Standard method for softening interaction in nuclear structure for decades: 

What happens 
as we keep 

increasing M? 

Gijkl(!) = Vijkl +
X

mn2Q

Vijmn
Q

! � "m � "n
Gmnkl(!)
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Fig. 33. Gmatrix at saturation density for the Argonne v18 potential [18] (left panels) and the N3LO potential of Ref. [20] (right panels) in the 3S1 channel.
Each set of four panels are (a) initial potential, (b) potential evolved by the SRG to � = 2 fm�1, (c) Gmatrix based on (a), and (d) Gmatrix based on (b).

truncated at the two-body level, as was assumed for part of the history of nuclear structure calculations. However, chiral EFT
reveals the natural scale and hierarchy of many-body forces, which dictates their inclusion in modern calculations of nuclei
and nucleonic matter. Thus, the real concern is whether this hierarchy is maintained as nuclear interactions are evolved.
In this section, we review the current status of RG technology to include many-body interactions and operators and the
presently known impact on the hierarchy.

4.1. Three-nucleon interactions

Three-nucleon interactions are a frontier. They are crucial for binding energies and radii, they play a central role for
spin–orbit effects, spin dependencies, for few-body scattering and the evolution of nuclear structure with isospin, and they
drive the density dependence of nucleonic matter (see Sections 5 and 6) [73]. Three-nucleon interactions are also required
for renormalization [125,126]. The construction of 3N forces based on chiral EFT provides a systematic organization of the
physics and an operator basis that can be used to approximate the evolution of low-momentum 3N interactions.

In chiral EFT without explicit 1 isobars, 3N forces first enter at N2LO (see Fig. 4) and contain a long-range 2⇡-exchange
part Vc , an intermediate-range 1⇡-exchange part VD and a short-range contact interaction VE [127,128]:

(31)
The 2⇡-exchange interaction is given by

Vc = 1
2

✓

gA
2f⇡

◆2
X

i6=j6=k

(�i · qi)(�j · qj)

(q2i + m2
⇡ )(q2j + m2

⇡ )
F↵�
ijk ⌧↵

i ⌧
�
j , (32)

where qi = k

0
i � ki denotes the difference of initial and final nucleon momenta (i, j and k = 1, 2, 3) and

F↵�
ijk = �↵�



�4c1m2
⇡

f 2⇡
+ 2c3

f 2⇡
qi · qj

�

+
X

�

c4
f 2⇡

✏↵�� ⌧
�
k �k · (qi ⇥ qj), (33)

while the 1⇡-exchange and contact interactions are given, respectively, by

VD = � gA
8f 2⇡

cD
f 2⇡ ⇤�

X

i6=j6=k

�j · qj

q2j + m2
⇡

(⌧ i · ⌧ j) (�i · qj), (34)

VE = cE
2f 4⇡ ⇤�

X

j6=k

(⌧ j · ⌧k). (35)

Typical values for applying Eqs. (32)–(35) are gA = 1.29, f⇡ = 92.4 MeV, m⇡ = 138.04 MeV and ⇤� = 700 MeV. In the RG
calculations based on chiral EFT interactions discussed here, the 3N force contributions are regulated as in Ref. [16] using

fR(p, q) = exp


� (p2 + 3q2/4)2

⇤4
3NF

�

, (36)

G-matrix Renormalization 
Results of G-matrix renormalization vs. SRG 
 

AV18 N3LO 

Removes some diagonal high-momentum components 
 

Still large low-to-high coupling in both interactions 
 

No indication of universality 
 

Clear difference compared with SRG-evolved interactions! 

G-mat 
G-mat 

SRG 

SRG+ 
G-mat 

SRG 

SRG+ 
G-mat 



Summary 
Low-momentum interactions can be constructed from any VNN via RG 

 

Low-to-high momentum coupling not desirable in low-energy nuclear physics 
 

Evolve to low-momentum while preserving low-energy physics 
 

Universality attained near cutoff of data 
 

Low-momentum cutoffs remove low-to-high harmonic oscillator couplings 
 

Cutoff variation assesses missing physics interaction level: tool not a parameter 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction
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