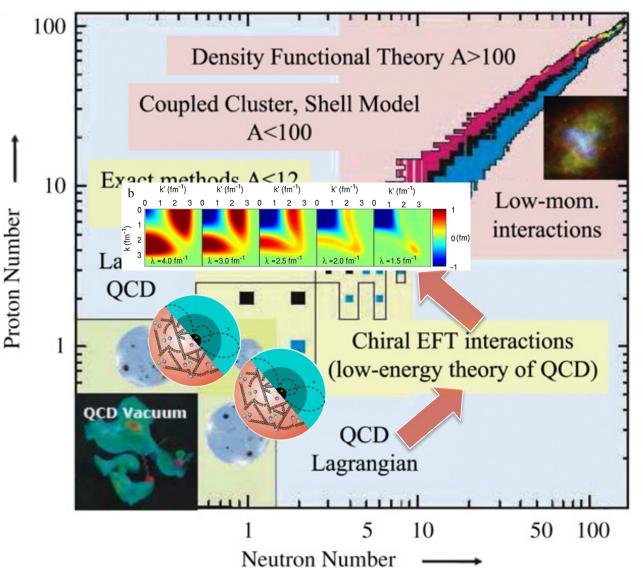
Part II: (S)RG and Low-Momentum Interactions

To understand the properties of complex nuclei from first principles



Renormalizing NN Interactions Basic ideas of RG Low-momentum interactions Similarity RG interactions Benefits of low cutoffs G-matrix renormalization

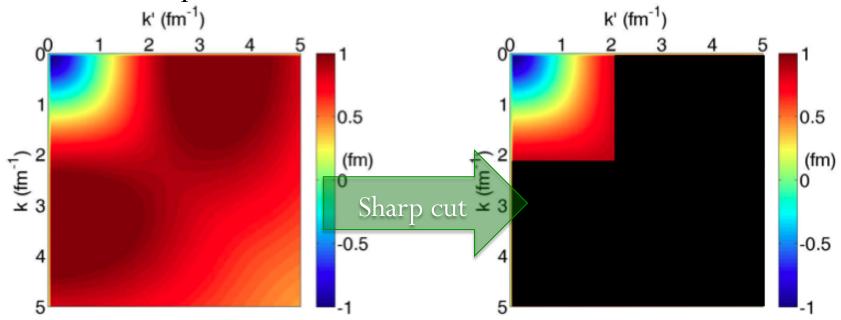
How will we approach this problem:

QCD \rightarrow NN (3N) forces \rightarrow Renormalize \rightarrow "Solve" many-body problem \rightarrow Predictions

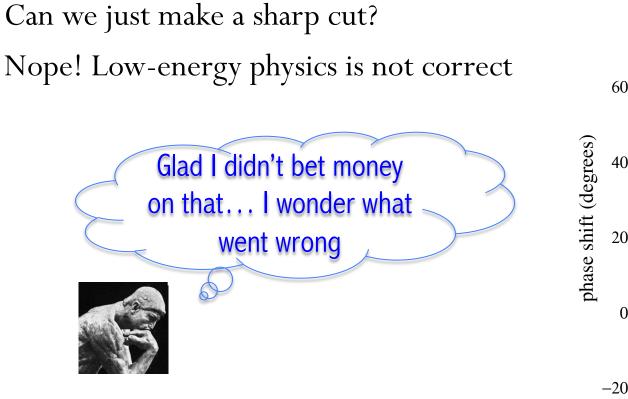
Ok, high momentum is a pain. I wonder what would happen to low-energy observables...

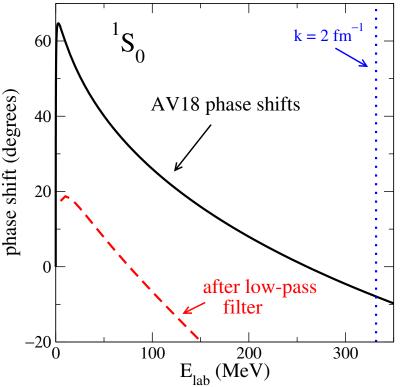
Low-to-high momentum makes life difficult for low-energy nuclear theorists, so let's get rid of it

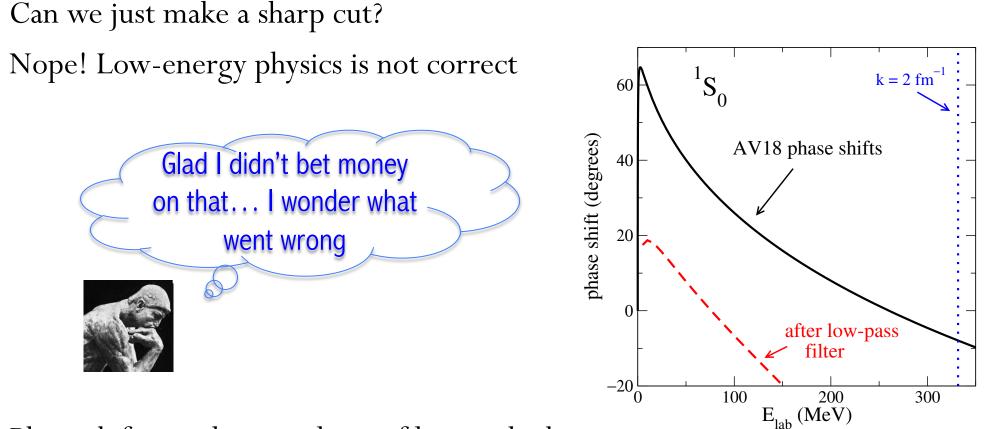
Can we just make a sharp cut and see if it works?



 $V_{\text{filter}}(k',k) \equiv 0; \ k,k' > 2.2 \,\text{MeV}$





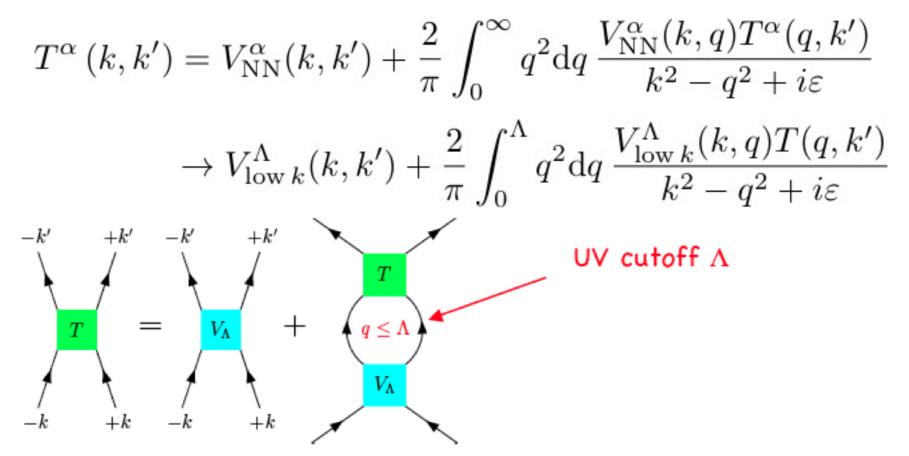


Phase shifts involve couplings of low-to-high momenta

$$\langle k|V|k'\rangle + \sum_{q=0}^{\Lambda} \frac{\langle k|V|q\rangle\langle q|V|k'\rangle}{\epsilon_{k'} - \epsilon_q} + \sum_{q=\Lambda}^{\infty} \frac{\langle k|V|q\rangle\langle q|V|k'\rangle}{\epsilon_{k'} - \epsilon_q}$$

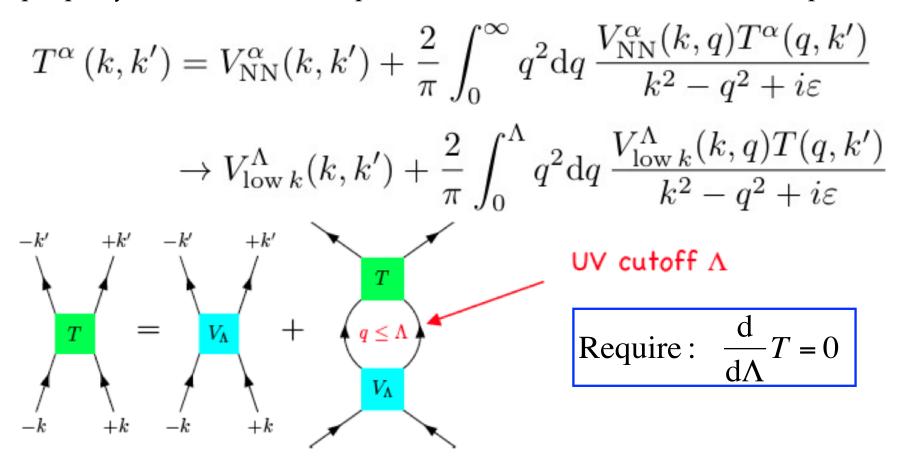
Lesson: Must ensure low-energy physics is preserved!

To do properly, from *T*-matrix equation, define **low-momentum** equation:



Lower UV cutoff, but preserve low-energy physics!

To do properly, from *T*-matrix equation, define **low-momentum** equation:

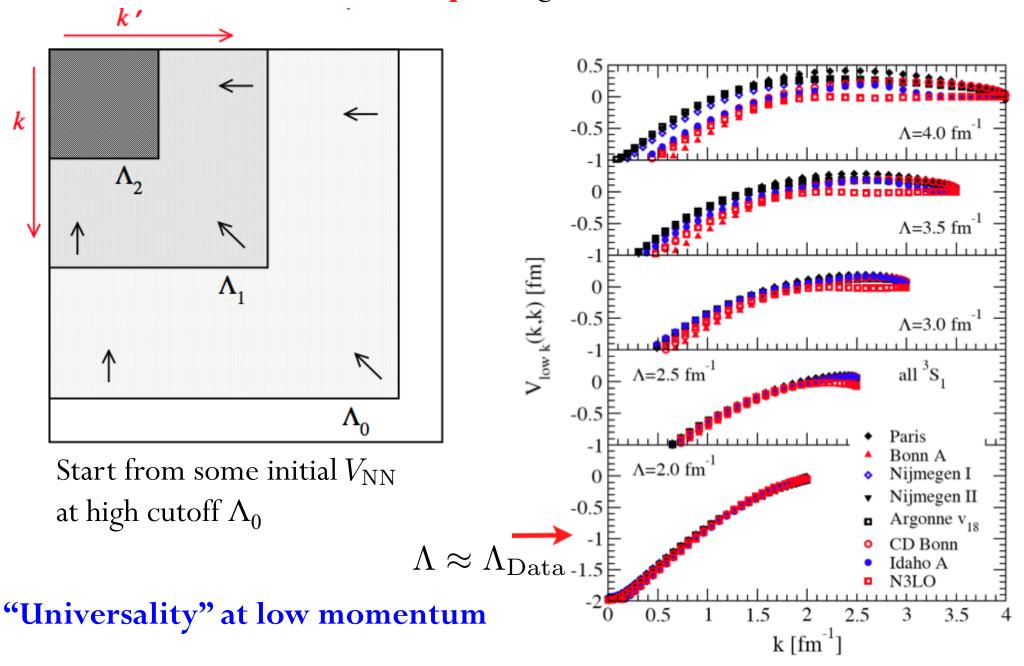


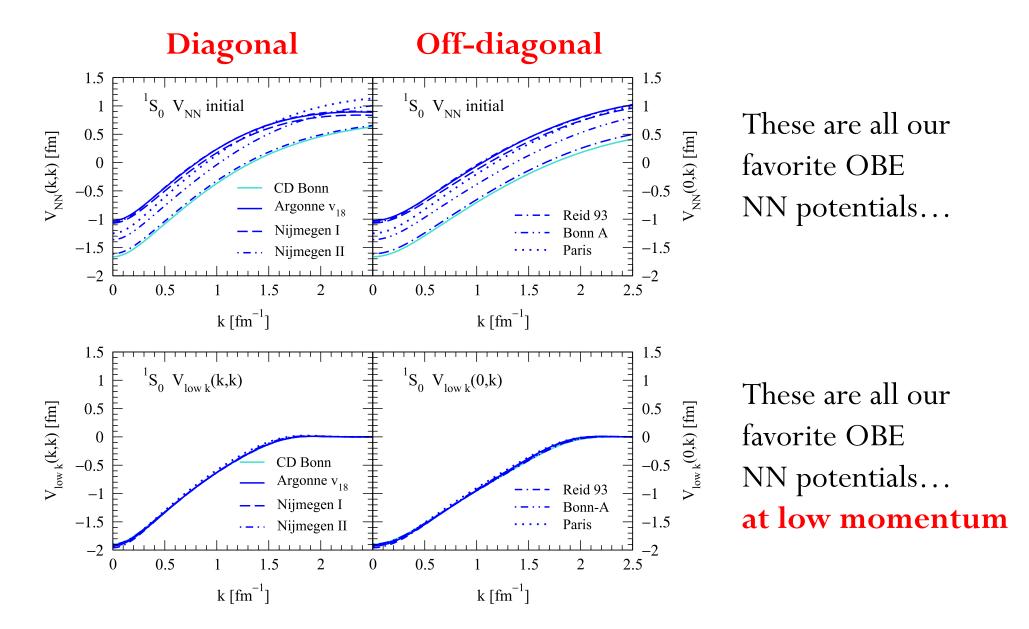
Lower UV cutoff, but preserve low-energy physics!

Leads to **renormalization group equation** for low-momentum interactions

$$\frac{\mathrm{d}}{\mathrm{d}\Lambda} V^{\Lambda}_{\mathrm{low}\,k}(k',k) = \frac{2}{\pi} \frac{V^{\Lambda}_{\mathrm{low}\,k}(k',\Lambda)T^{\Lambda}(\Lambda,k)}{1-(k/\Lambda)^2}$$

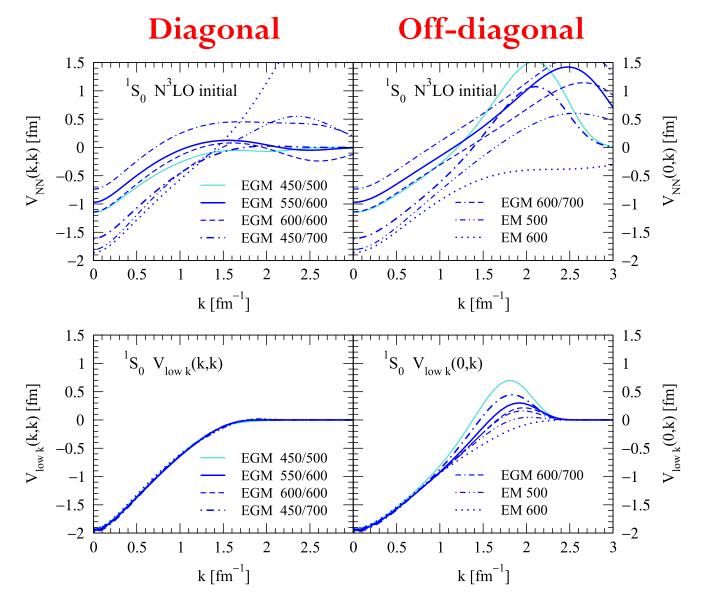
Run cutoff to lower values – decouples high-momentum modes





Universal collapse in both diagonal/off-diagonal components, most partial waves

Renormalization of Chiral EFT Potentials

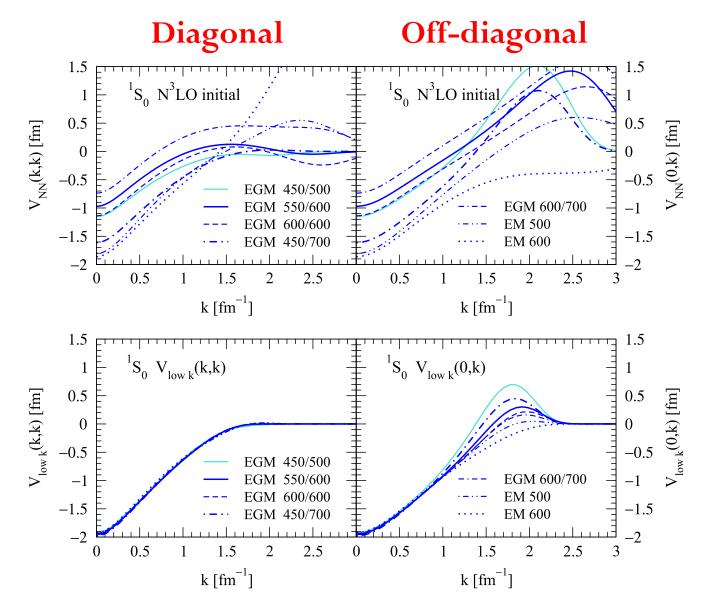


These are all our favorite Chiral EFT NN potentials...

These are all our favorite Chiral EFT NN potentials... **at low momentum**

Differences remain in off-diagonal matrix elements. Why?

Renormalization of Chiral EFT Potentials

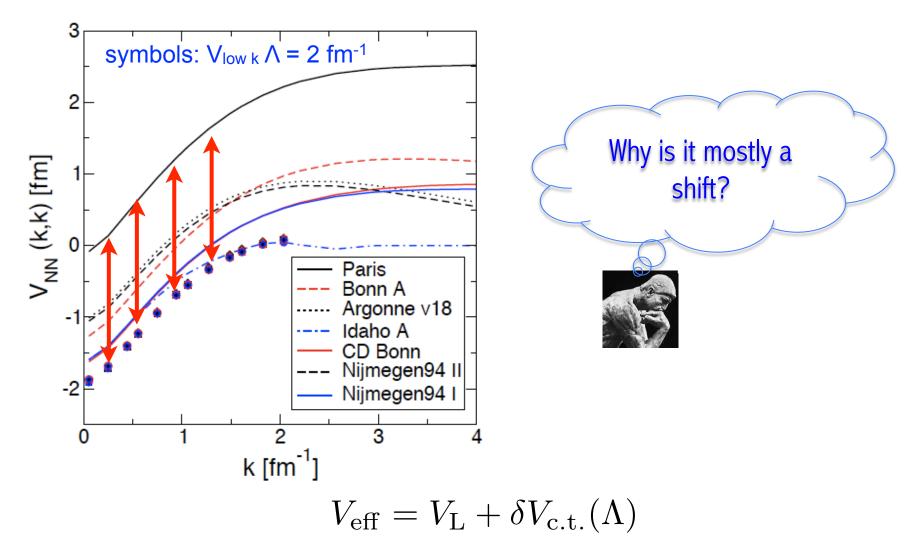


These are all our favorite Chiral EFT NN potentials...

These are all our favorite Chiral EFT NN potentials... **at low momentum**

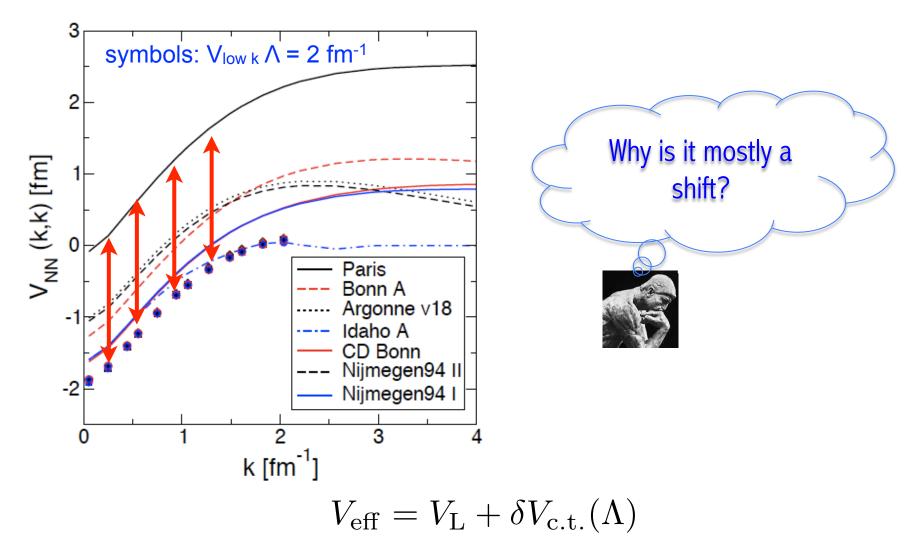
Differences remain in off-diagonal matrix elements Sensitive to agreement for phase shifts (not all fit perfectly)

Renormalization of NN Potentials



Overall effect of evolving to low momentum Main effect is shift in momentum space

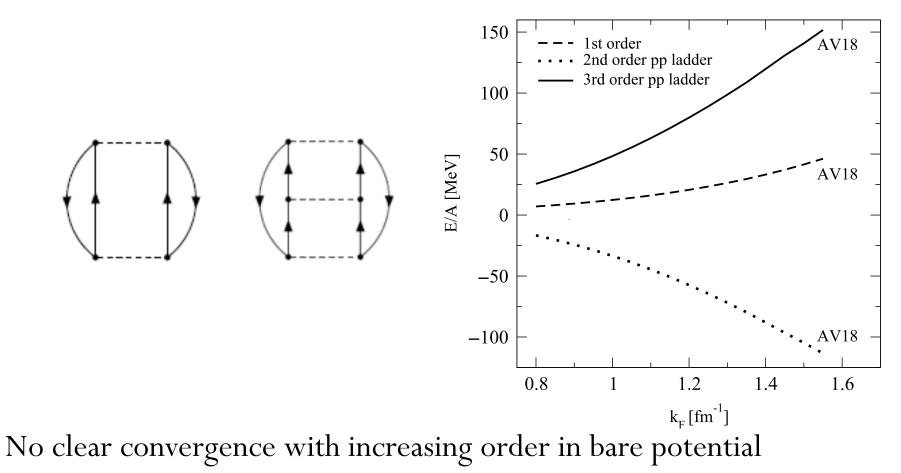
Renormalization of NN Potentials



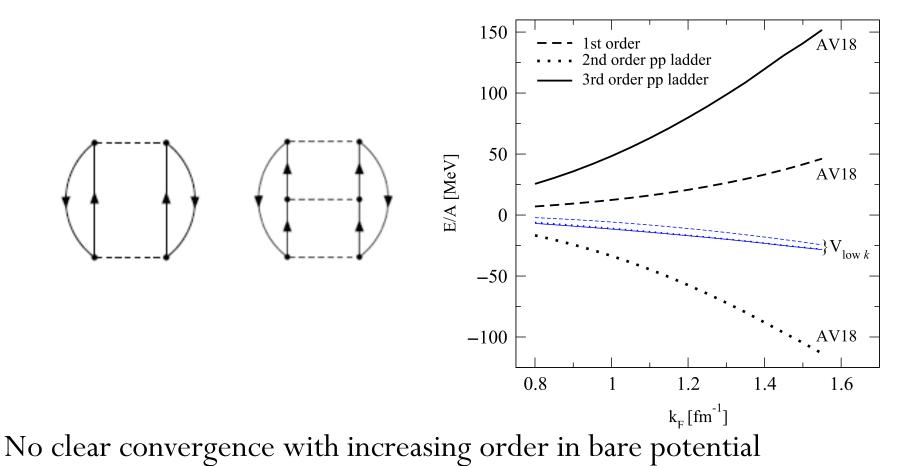
Overall effect of evolving to low momentum

Main effect is shift in momentum space – delta function Removes hard core (unconstrained short-range physics)!

Explore improvements in symmetric infinite matter calculations Order by order in **many-body perturbation theory (MBPT)**

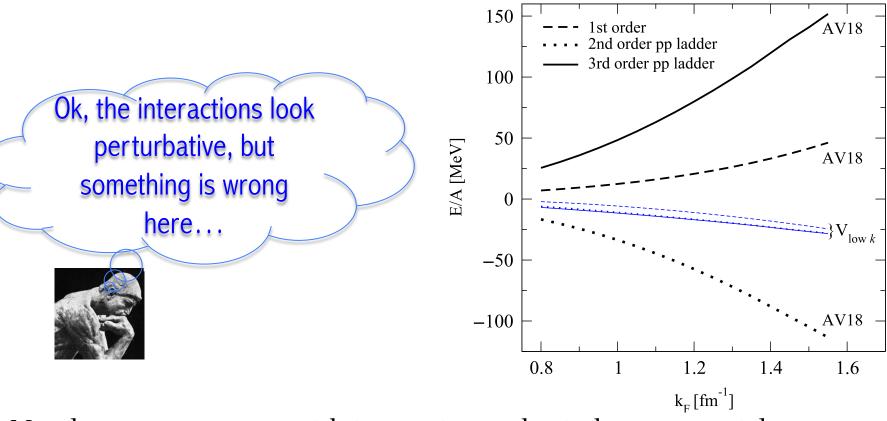


Explore improvements in symmetric infinite matter calculations Order by order in **many-body perturbation theory (MBPT)**



Significant improvement with low-momentum interactions!

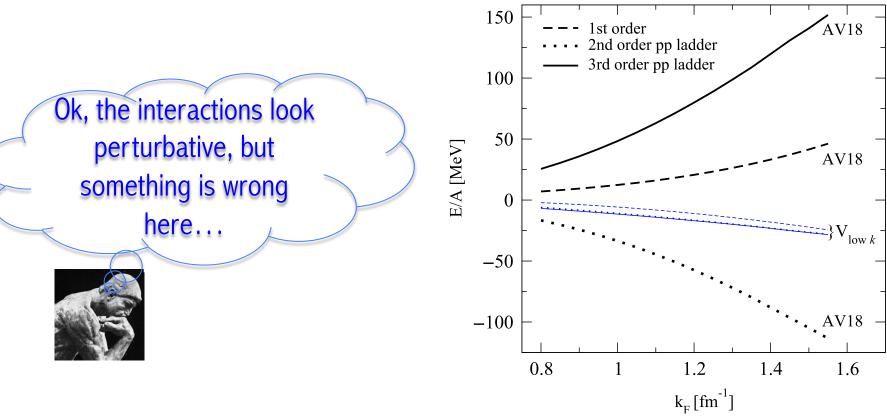
Explore improvements in symmetric infinite matter calculations Order by order in **many-body perturbation theory (MBPT)**



No clear convergence with increasing order in bare potential

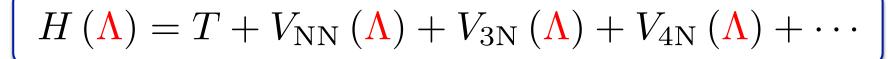
Significant improvement with low-momentum interactions!

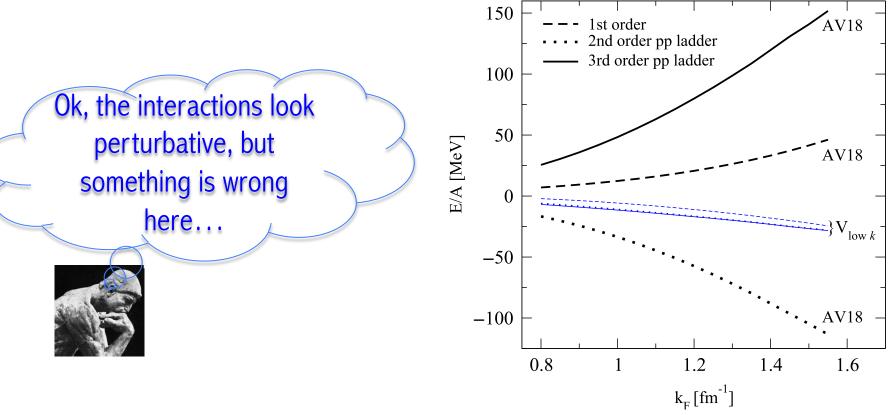
Explore improvements in symmetric infinite matter calculations Order by order in **many-body perturbation theory (MBPT)**



No clear convergence with increasing order in bare potential

Significant improvement with low-momentum interactions! Does not saturate – what might be missing?





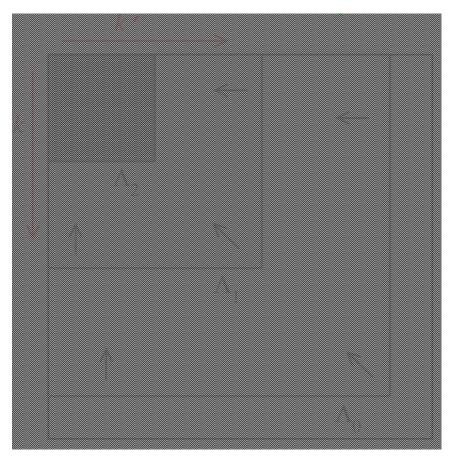
No clear convergence with increasing order in bare potential

Significant improvement with low-momentum interactions! Does not saturate – what might be missing?

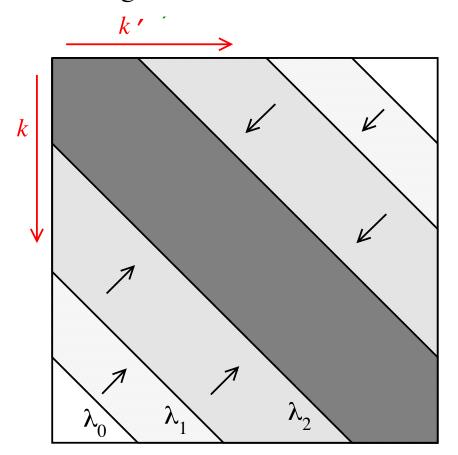
Similarity Renormalization Group

Wegner, Glazek/Wilson (1990s)

Complementary method to decouple low from high momenta



Decouples high-momentum



Similarity Renormalization Group Drives Hamiltonian to band-diagonal

Similarity Renormalization Group

Wegner, Glazek/Wilson (1990s)

Apply a continuous unitary transformation, parameterized by s:

$$H = T + V \to H(s) = U(s)HU^{\dagger}(s) \equiv T + V(s)$$

where differentiating (exercise) yields:

$$\frac{\mathrm{d}H(s)}{\mathrm{d}s} = [\eta(s), H(s)] \quad \text{where} \quad \eta(s) \equiv \frac{\mathrm{d}U(s)}{\mathrm{d}s} U^{\dagger}(s)$$

Never explicitly construct unitary transformation Instead **choose generator to obtain desired behavior**:

 $\eta(s) = [G(s), H(s)]$

Many options, e.g.,

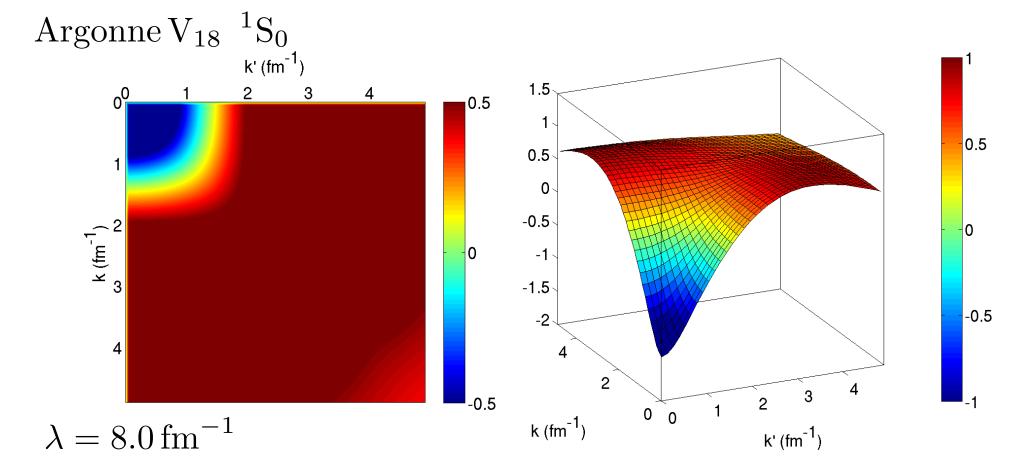
 $\eta(s) = [T, H(s)]$ Drives H(s) to band-diagonal form

Drive H to band-diagonal form with kinetic-energy generator:

 $\eta(s) = [T, H(s)]$

With alternate definition of flow parameter:

$$\lambda^2 = \frac{1}{\sqrt{s}}$$

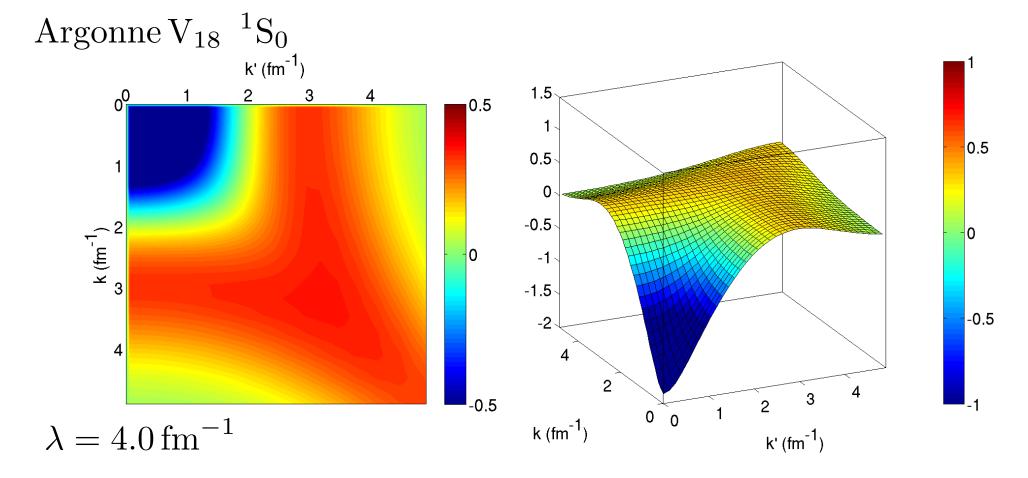


Drive H to band-diagonal form with standard choice:

 $\eta(s) = [T, H(s)]$

With alternate definition of flow parameter: λ

$$\lambda^2 = \frac{1}{\sqrt{s}}$$

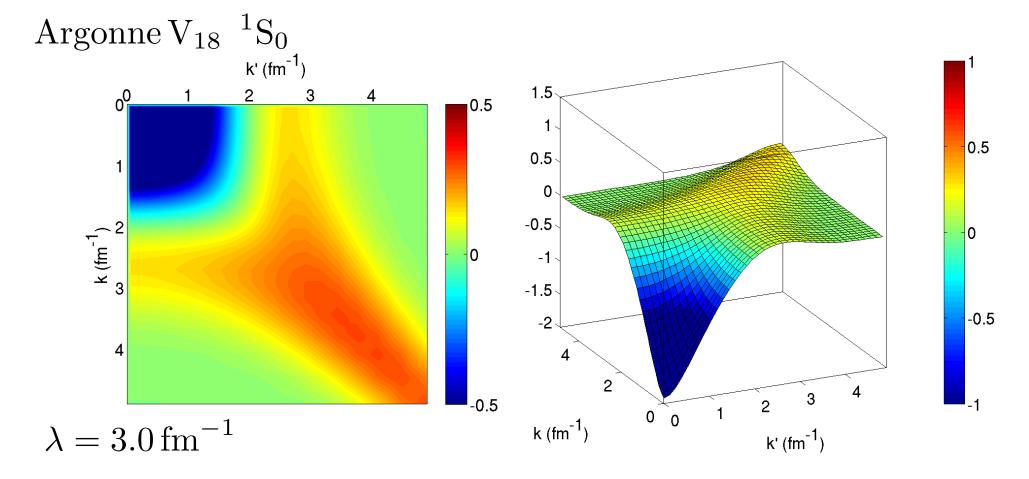


Drive H to band-diagonal form with standard choice:

 $\eta(s) = [T, H(s)]$

With alternate definition of flow parameter:

$$\lambda^2 = \frac{1}{\sqrt{s}}$$

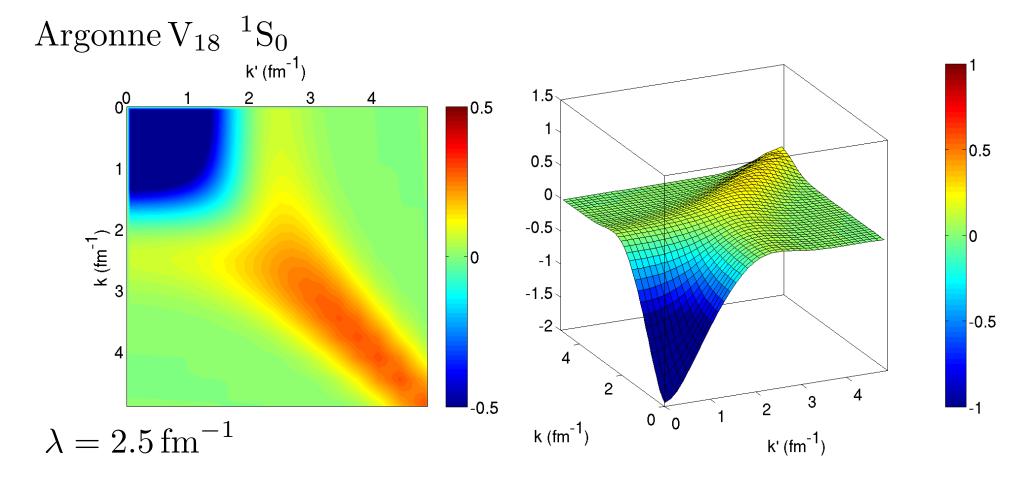


Drive H to band-diagonal form with standard choice:

 $\eta(s) = [T, H(s)]$

With alternate definition of flow parameter: λ

$$\lambda^2 = \frac{1}{\sqrt{s}}$$

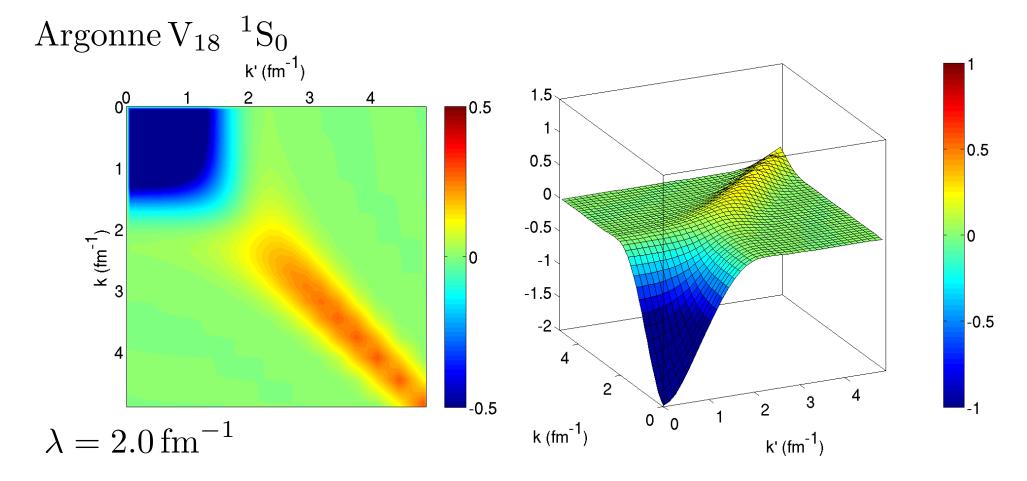


Drive H to band-diagonal form with standard choice:

 $\eta(s) = [T, H(s)]$

With alternate definition of flow parameter:

$$\lambda^2 = \frac{1}{\sqrt{s}}$$

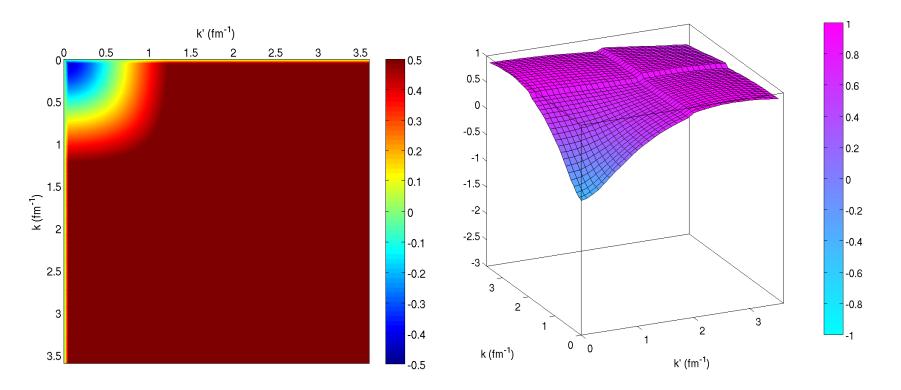


Other Generator Choices: Block Diagonal

Create block diagonal form like V_{lowk} ?

$$G(s) = H_{\rm BD} = \begin{pmatrix} PH(s)P & 0\\ 0 & QH(s)Q \end{pmatrix}$$

With alternate definition of flow parameter: $\lambda^2 = \frac{1}{\sqrt{s}}$



Argonne
$$V_{18}$$
 ³S₁

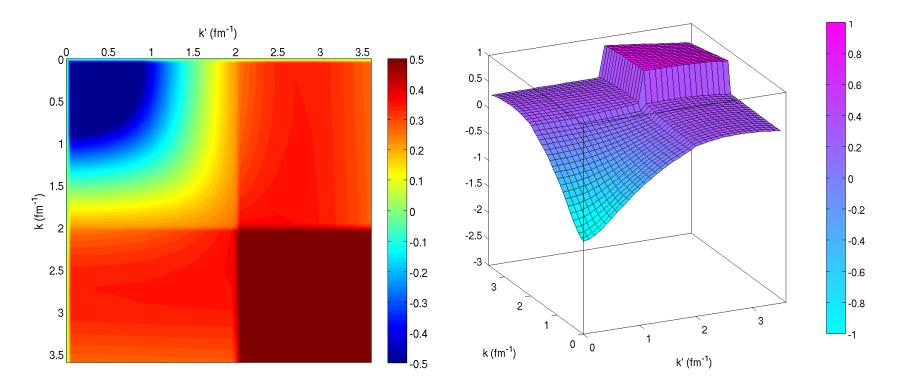
 $\lambda = 10.0 \, \mathrm{fm}^{-1}$

Other Generator Choices: Block Diagonal

Create block diagonal form like V_{lowk} ?

$$G(s) = H_{\rm BD} = \begin{pmatrix} PH(s)P & 0\\ 0 & QH(s)Q \end{pmatrix}$$

With alternate definition of flow parameter: $\lambda^2 = \frac{1}{\sqrt{s}}$



Argonne V_{18} ³S₁

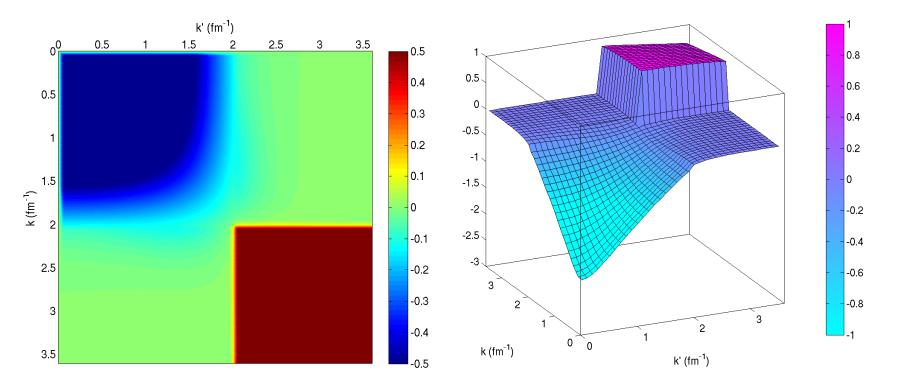
 $\lambda = 5.0 \, \mathrm{fm}^{-1}$

Other Generator Choices: Block Diagonal

Create block diagonal form like V_{lowk} ?

$$G(s) = H_{\rm BD} = \begin{pmatrix} PH(s)P & 0\\ 0 & QH(s)Q \end{pmatrix}$$

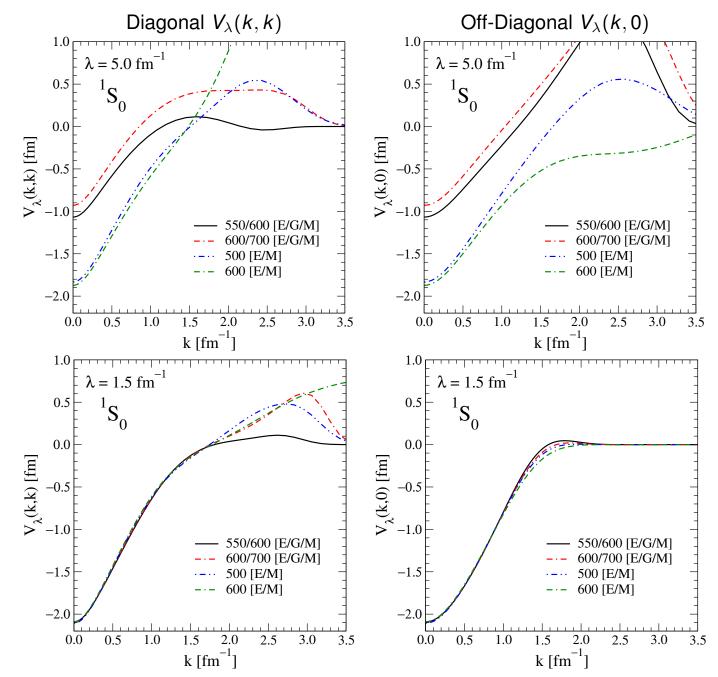
With alternate definition of flow parameter: $\lambda^2 = \frac{1}{\sqrt{s}}$



Argonne V_{18} ³S₁

 $\lambda = 2.0 \, \mathrm{fm}^{-1}$

SRG Renormalization of Chiral EFT Potentials



These are all our favorite Chiral EFT NN potentials...

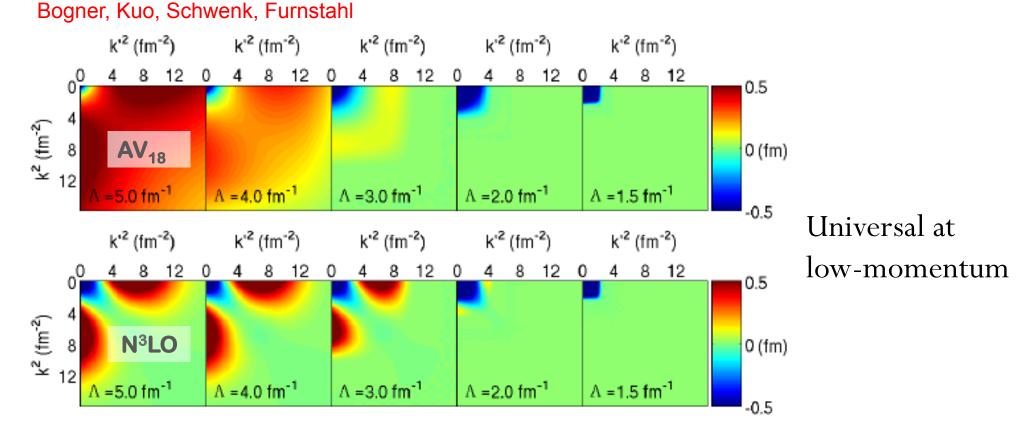
These are all our favorite Chiral EFT NN potentials... **SRG evolved**

Exhibit similar "universal" behavior as low-momentum interactions!

Renormalization of Nuclear Interactions

$$H(\Lambda) = T + V_{\rm NN}(\Lambda) + V_{\rm 3N}(\Lambda) + V_{\rm 4N}(\Lambda) + \cdots$$

Evolve momentum resolution scale of chiral interactions from initial Λ_{χ} Remove coupling to high momenta, low-energy physics unchanged



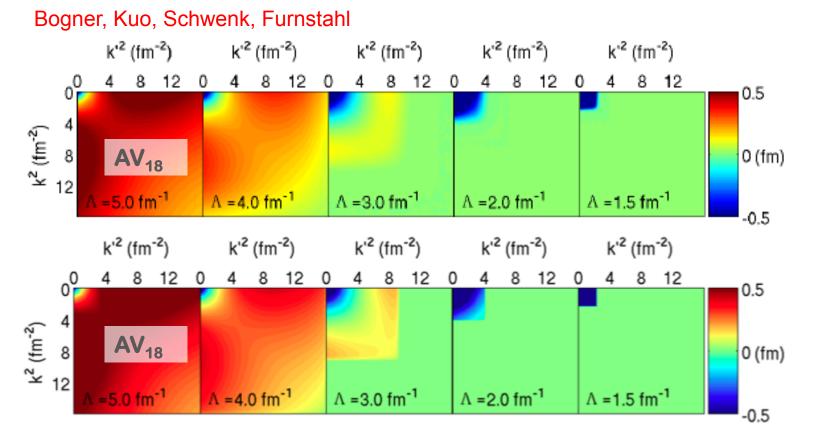
 $V_{\text{low }k}(\Lambda)$: lower cutoffs advantageous for nuclear structure calculations

Smooth vs. Sharp Cutoffs

$$H\left(\mathbf{\Lambda}\right) = T + V_{\mathrm{NN}}\left(\mathbf{\Lambda}\right) + V_{3\mathrm{N}}\left(\mathbf{\Lambda}\right) + V_{4\mathrm{N}}\left(\mathbf{\Lambda}\right) + \cdots$$

Can have sharp as well as smooth cutoffs

Remove coupling to high momenta, low-energy physics unchanged

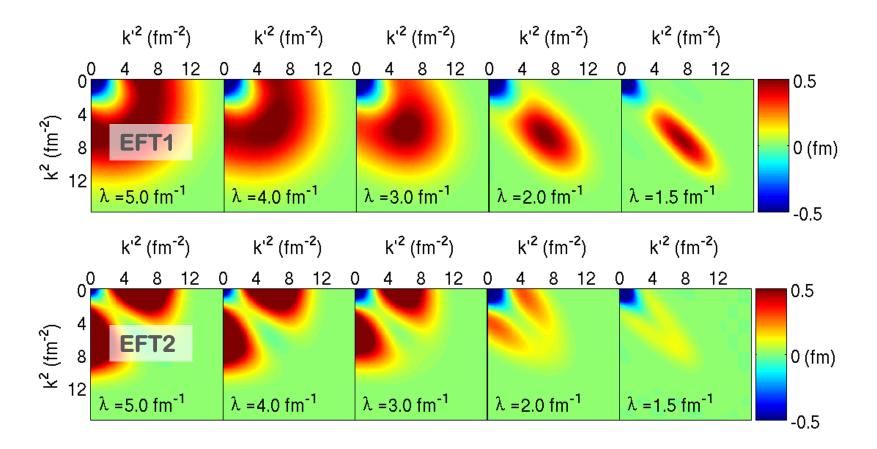


Similar but not exact same results – will be differences in calculations

SRG-Evolution of Different Initial Potentials

$$H(\Lambda) = T + V_{\rm NN}(\Lambda) + V_{\rm 3N}(\Lambda) + V_{\rm 4N}(\Lambda) + \cdots$$

SRG evolution of two different chiral EFT potentials



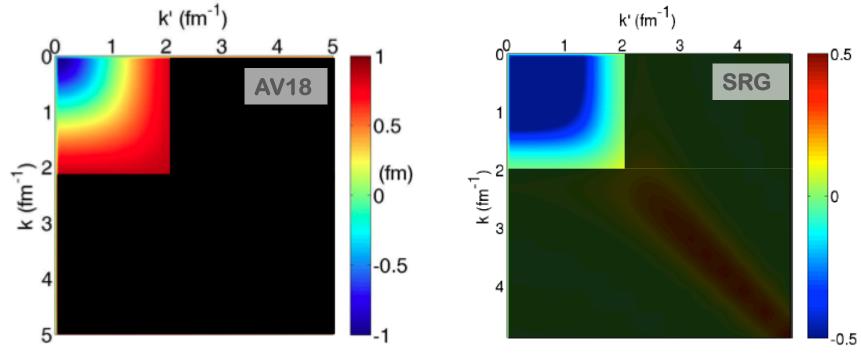
Lots of pretty pictures, but how does it actually help?

Revisit Low-Pass Filter Idea

Ok, high momentum is a pain. I wonder what would happen to low-energy observables...

Low-to-high momentum makes life difficult for low-energy nuclear theorists

What's the difference now?



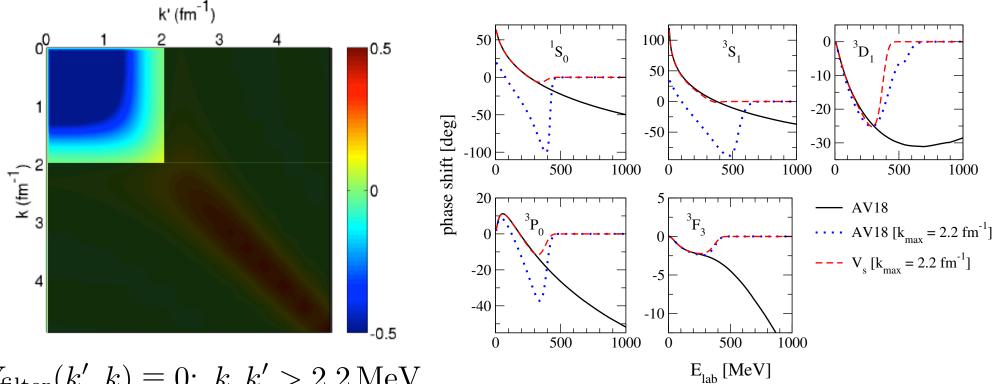
 $V_{\text{filter}}(k',k) \equiv 0; \ k,k' > 2.2 \,\text{MeV}$

Revisit Low-Pass Filter Idea

Ok, high momentum is a pain. I wonder what would happen to low-energy observables...

Low-to-high momentum makes life difficult for low-energy nuclear theorists

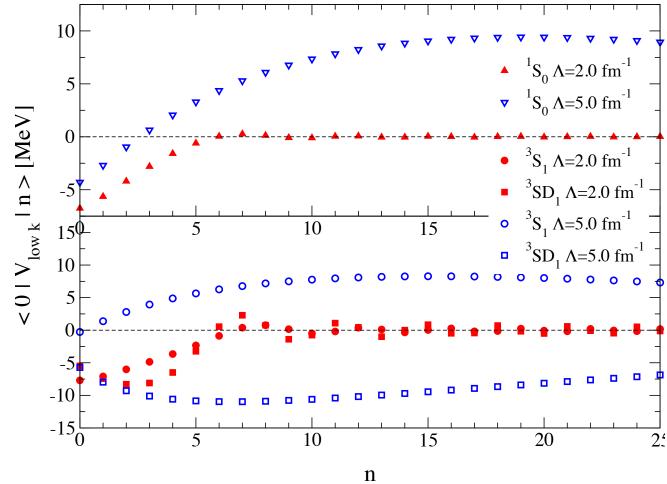
Low-energy observables were preserved – now sharp cut makes sense!



 $V_{\text{filter}}(k',k) \equiv 0; \ k,k' > 2.2 \,\text{MeV}$

Benefits of Lower Cutoffs

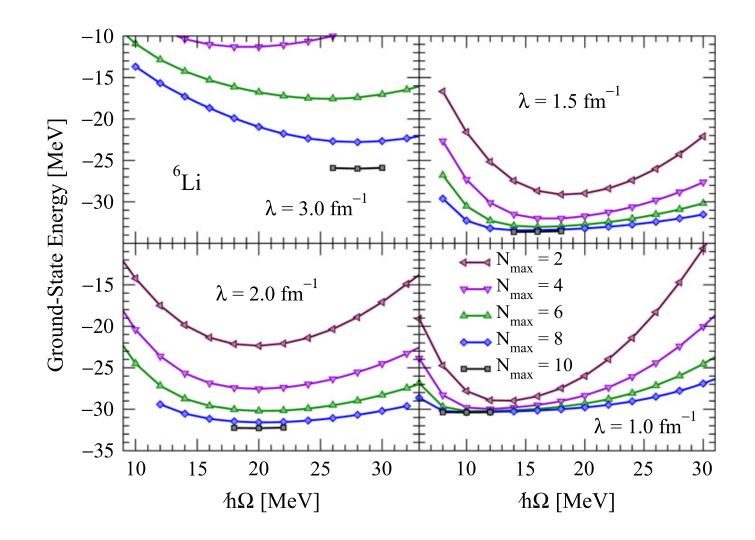
Often work in HO basis – does this make a difference there? Removes coupling from low-to-high harmonic oscillator states Expect to speed convergence in HO basis



Explicitly see why this causes problems later!

Benefits of Lower Cutoffs

Exactly what happens in **no-core shell model calculations** Probably equally helpful in normal shell-model calculations? Come back to this later...



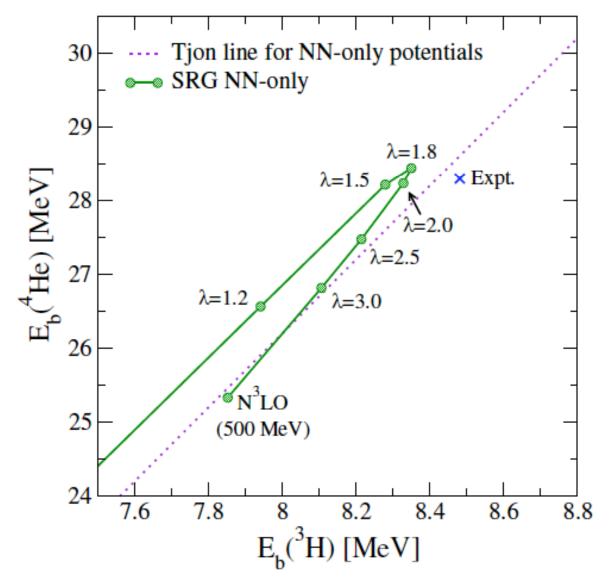
Benefits of Lower Cutoffs

Use cutoff dependence to assess missing physics: return to Tjon line

Varying cutoff moves along line Still never reaches experiment

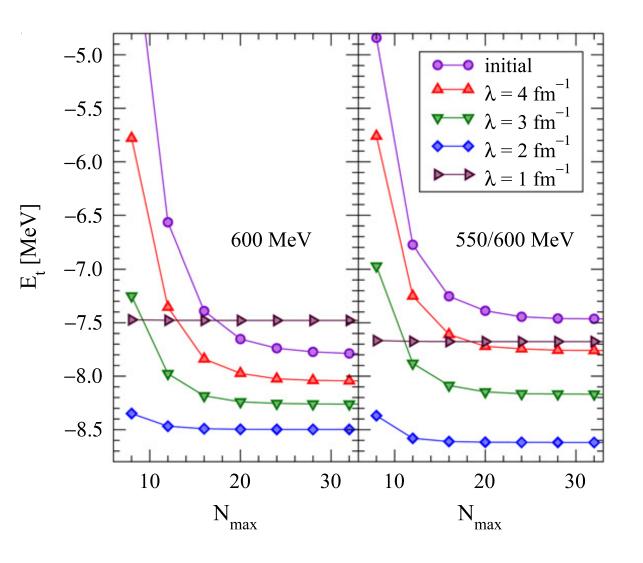
Lesson:Variation in physical observables with cutoff indicates missing physics

Tool, not a parameter!



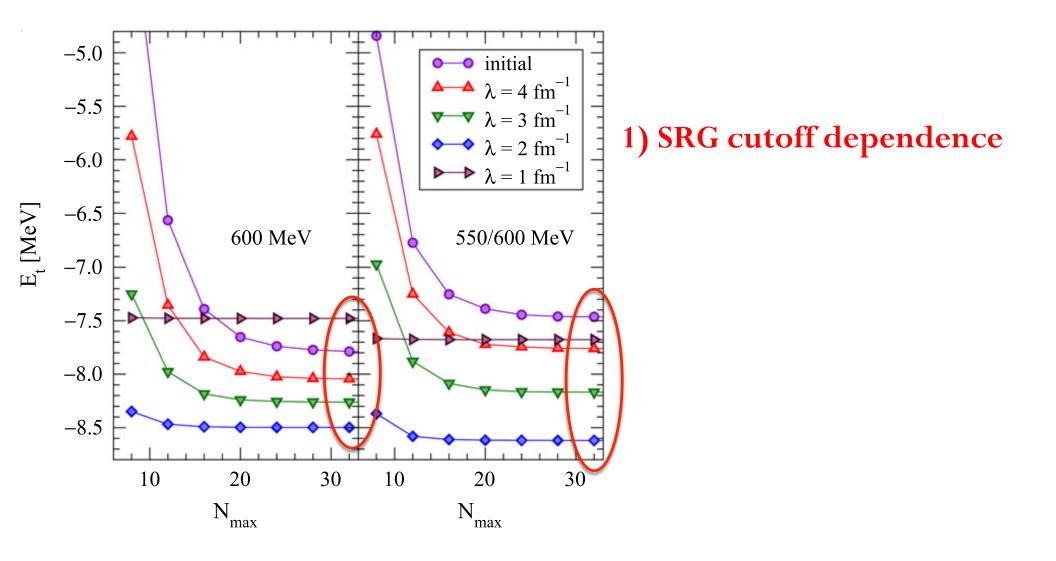
Benefits of Lower Cutoffs

Triton binding energy - again clearly improved convergence behavior Clear dependence on cutoff – more than one, look closely... What is the source(s)?



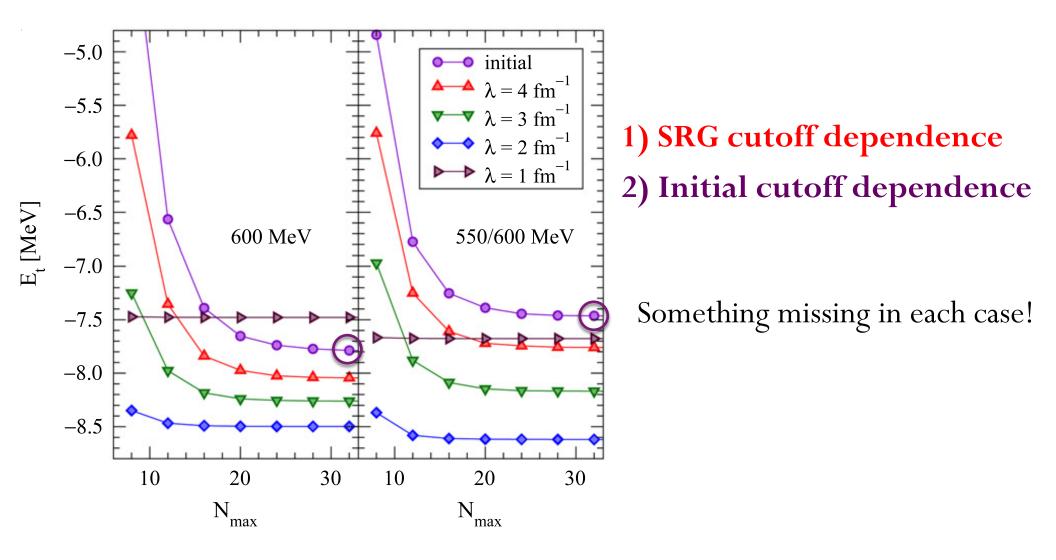
Benefits of Lower Cutoffs

Triton binding energy - again clearly improved convergence behavior Clear dependence on cutoff – more than one, look closely... What is the source(s)?



Benefits of Lower Cutoffs

Triton binding energy - again clearly improved convergence behavior Clear dependence on cutoff – more than one, look closely... What is the source(s)?



Case 1: Price of Low Cutoffs = Induced Forces

Life Lesson: no free lunch – not even at Summer Schools, apparently \otimes Consider Hamiltonian with only two-body forces:

 $H = T + V_{\rm NN}$

And $\eta(s) = [T, H(s)]$

$$\frac{\mathrm{d}H(s)}{\mathrm{d}s} = \left[\eta(s), H(s)\right] = \left[\left[T, T + V(s)\right], T + V(s)\right]$$

Simply expand with creation/annihilation operators:

Case 1: Price of Low Cutoffs = Induced Forces

Life Lesson: no free lunch – not even at Summer Schools, apparently \otimes Consider Hamiltonian with only two-body forces:

 $H = T + V_{\rm NN}$

And $\eta(s) = [T, H(s)]$

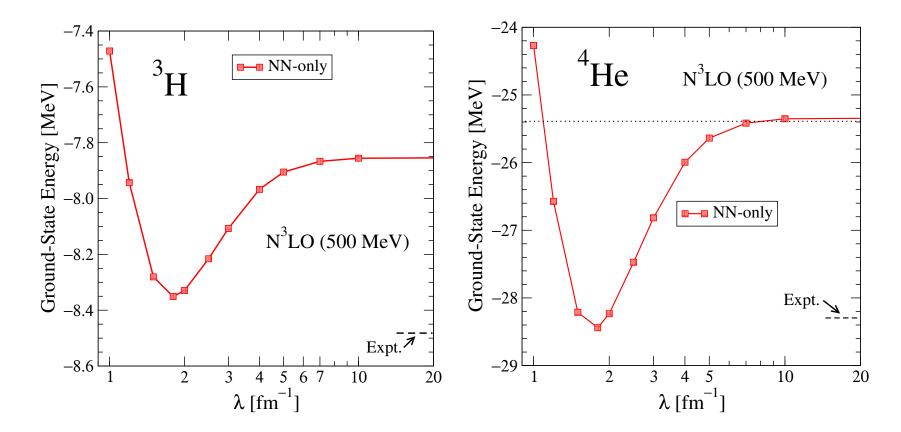
$$\frac{\mathrm{d}H(s)}{\mathrm{d}s} = \left[\eta(s), H(s)\right] = \left[\left[T, T + V(s)\right], T + V(s)\right]$$

Simply expand with creation/annihilation operators:

Three-body terms will appear even when initial 3-body forces absent Call these induced 3N forces (3N-ind)

Induced 3N Forces

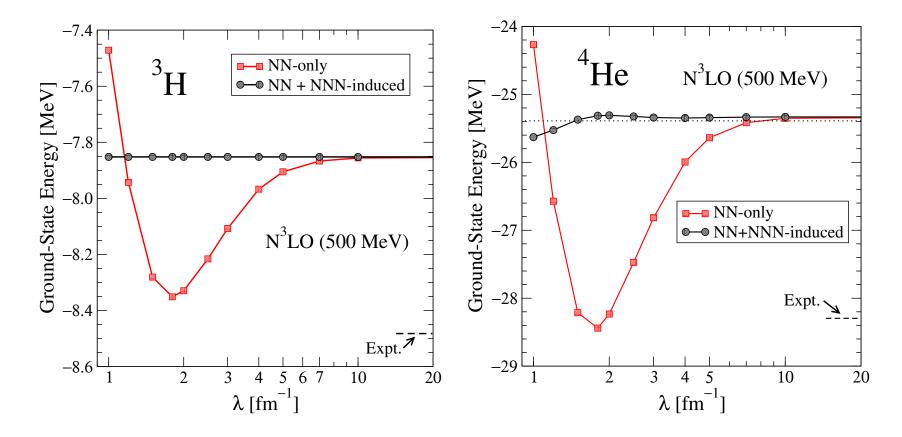
Effect of including 3N-ind? Exactly initial $V_{\rm NN}$ up to neglected 4N-ind



NN-only clear cutoff dependencs

Induced 3N Forces

Effect of including 3N-ind? Exactly initial $V_{\rm NN}$ up to neglected 4N-ind

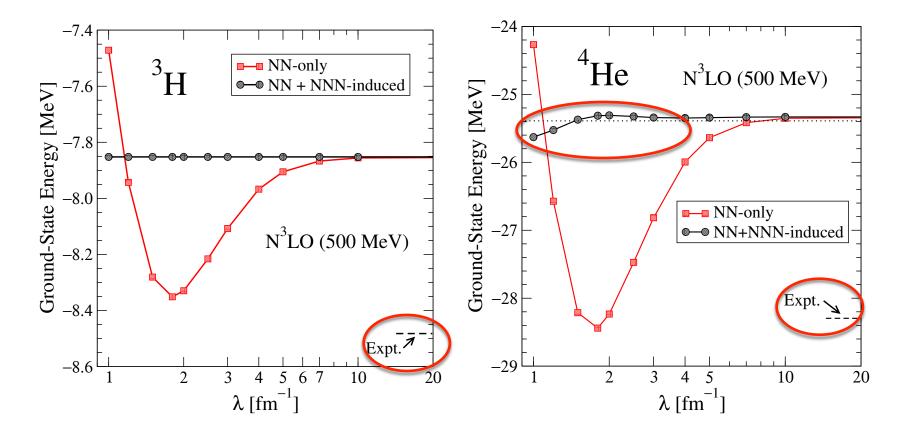


NN-only clear cutoff dependencs

3N-induced – dramatic reduction in cutoff dependence! Lesson: SRG cutoff variation a sign of neglected induced forces

Induced 3N Forces

Effect of including 3N-ind? Exactly initial $V_{\rm NN}$ up to neglected 4N-ind

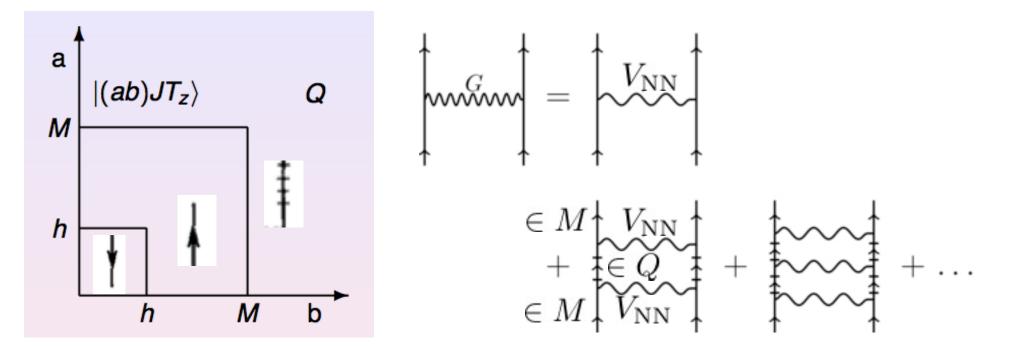


NN-only clear cutoff dependencs

3N-induced – dramatic reduction in cutoff dependence! Lesson: SRG cutoff variation a sign of neglected induced forces Still far from experiment and remaining (minor) cutoff dependence!

Aside: G-matrix Renormalization

Standard method for softening interaction in nuclear structure for decades:



Infinite summation of ladder diagrams

Need two model spaces:

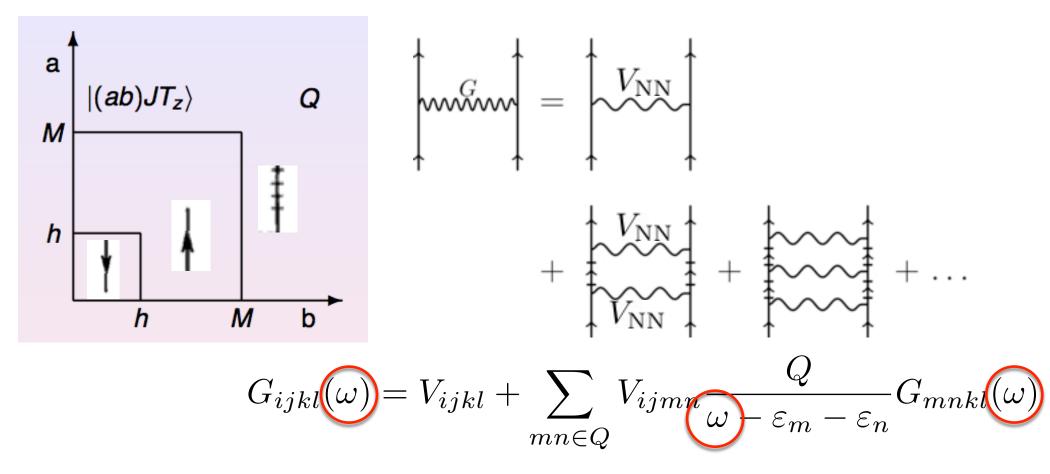
1) **M** space in which we will want to calculate (excitations allowed in M)

2) Large space \mathbf{Q} in which particle excitations are allowed

To avoid double counting, can't overlap – matrix elements depend on M

Aside: G-matrix Renormalization

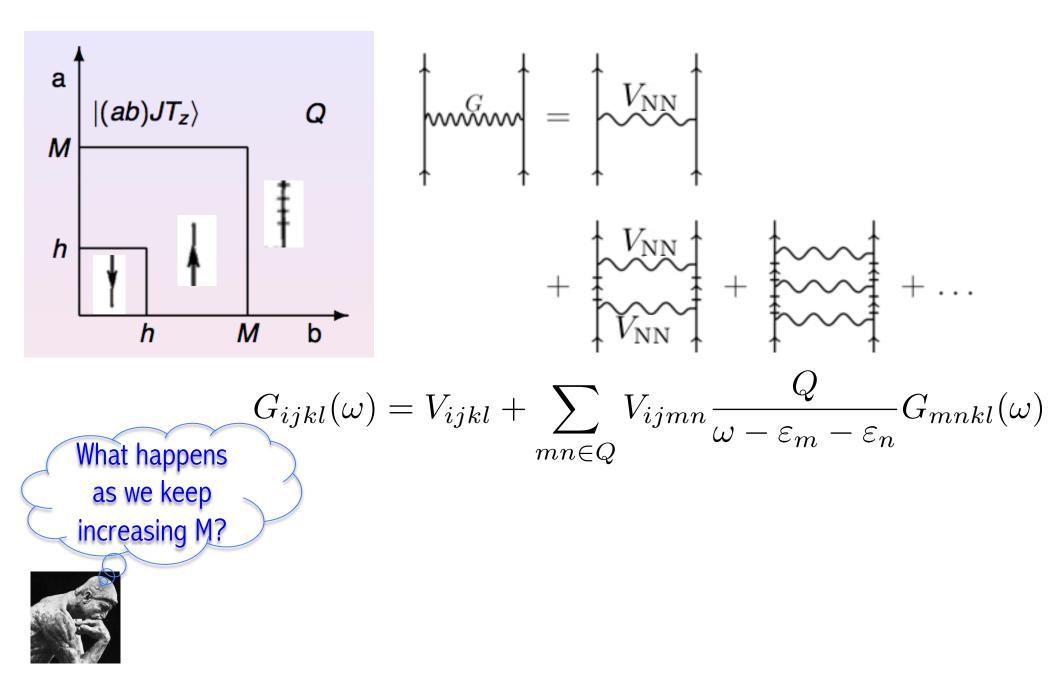
Standard method for softening interaction in nuclear structure for decades:



Iterative procedure Dependence on arbitrary starting energy!

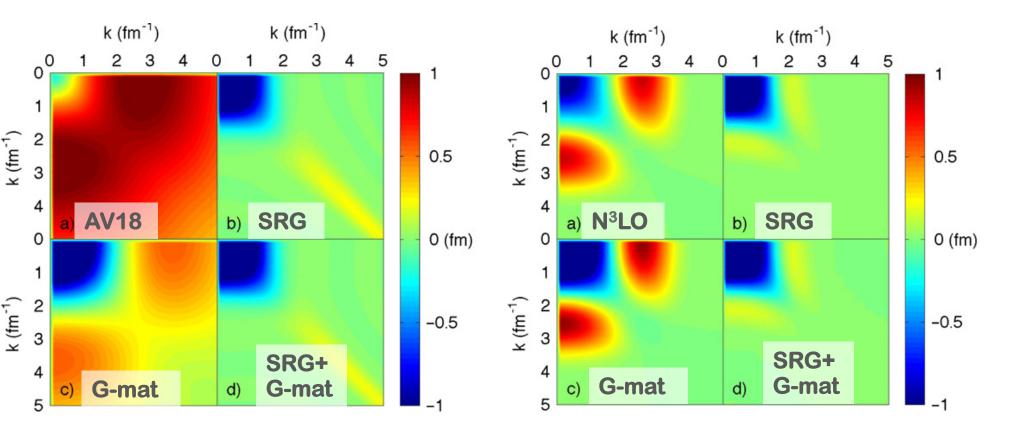
G-matrix Renormalization

Standard method for softening interaction in nuclear structure for decades:



G-matrix Renormalization

Results of **G-matrix** renormalization vs. SRG

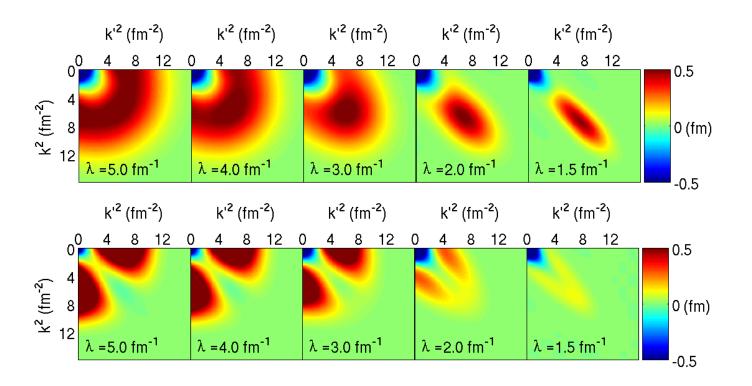


Removes some diagonal high-momentum components

- Still large low-to-high coupling in both interactions
- No indication of universality
- Clear difference compared with SRG-evolved interactions!

Summary

Low-momentum interactions can be constructed from any $\rm V_{NN}$ via RG



Low-to-high momentum coupling not desirable in low-energy nuclear physics Evolve to low-momentum while preserving low-energy physics Universality attained near cutoff of data

Low-momentum cutoffs remove low-to-high harmonic oscillator couplings Cutoff variation assesses missing physics interaction level: tool not a parameter